Int. ] Sup. Chain. Mgt

25

Vol. 4, No. 1, March 2015

A Binary, Non-convex, Variable-capacitated
Supply Chain Model

Sahand Ashtdb, Richard J. Cardf Esaignani Selvaraj&h

“IDepartment of Industrial and Manufacturing Systéingineering

University of Windsor, Windsor, ON, Canada, N9B 3P4

tashtab@uwindsor.ca
#Department of Mathematics and Statistics

University of Windsor, Windsor, ON, Canada, N9B 3P4

Zrcaron@uwindsor.ca
*0dette School of Business

University of Windsor, Windsor, ON, Canada, N9B 3P4

3selvare@uwindsor.ca

Abstract: This paper is concerned with three-echelon supply
chain design where each supplier provides a uniquset of
goods from known, possibly multiple, locations andvhere
each outlet has a fixed, known demand so that it bibits the
features of the supply chain of an existing companyhat
operates across Canada and in the United States Afmerica
(35 suppliers, 83 potential DC locations and 2,97@utlets). A
mathematical model is presented whose solution deteines
the location and capacity level of Distribution Ceters (DCs)
and assigns outlets to the selected DCs. The modglnique
in that it allows true variability in the choice of capacity level
and so avoids the need to determine, a priori, a sef
potential capacity levels. The design objective i® minimize
fixed and variable costs for operations and transpaation
that account for decreasing marginal costs and ecomies of
scale. This makes the model a binary, non-convex
optimization problem. A piecewise linear approximaion to
the concave cost functions that captures the condemf
“technology break-points" results in a model for whch
LINGO can quickly determine high quality solutions.
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1. Introduction

The optimal design of supply chains is criticabidler for
a company to become and / or remain globally coitinet
Excellent reviews of the published literature canfGund
in, for example, [1]-[4]. The decision phases fapgly
chain management can be classified as strategiicah
and operational [5]. Strategic management is comakr
with decisions such as the number, location and the
capacity level of Distributions Centers (DCs). Teait
decisions include the determination of the flowpodducts
between the supply chain echelons over a sped#iming
horizon.

Operational decisions involve items such as trucking.
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This paper addresses both strategic and tacticaidas
for a three echelon supply chain with supplierstriiution
centers (DCs), also called plants and outlets, edsled
customers.

The Simple Plant Location Problem (SPLP), also kmaw
the Uncapacitated Facility Location (UFL) problegiven

in [6], [7] has binary variables to indicate whetle not a
plant is built at a pre-selected location and hastional
variables to determine the percentage of demandé&oh
customer met by a particular plant. The cost fumdi
include transportation costs and fixed cost forlding.
While SPLP is NP-hard, primal-dual algorithms can b
effective in solving large SPLP problems to optittyalor
near optimality [8]. Generalizations to the SPLElude
the consideration of trade-offs between inventory,
transportation and building costs [9], an abilibychoose
the optimal mix between dedicated and flexible
technologies [10], the inclusion of costs modelgdthe
convex part of a non-linear, increasing functiod][lthe
extension to two echelon supply chains [12] andtimul
product supply chain designs [13], [14]. An exaduBon
method when there are convex transportation castde
found in [15].

In [16] a new formulation is given for the multivied
supply chain network design and is shown that saradl
medium sized instances of this formulation can dieesi

by, for example, CPLEX. A mixed integer linear
programming model, along with a Lagrangean based
solution procedure, is given in [17] for three-dohe
multi-capacitated supply chain network design. The
capacity levels and locations of the DCs and sepplare
chosen from predetermined locations and from fisées

of discrete capacity levels, respectively. The éasttions

in the model include the variable costs associaitiuthe
chosen capacity level. In [18], the variable coate
charged only for the level of activity resultinganbinary
quadratic optimization model. Beasley [19] presénte
Lagrangian-based solution procedure for differenation
problems including p — median and uncapacitatedtioc
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problem. The capacitated plant location problem for
offshore oil exploration platforms is studied if0[2

This paper is concerned with three-echelon
variable-capacitated supply chain network desigth wi
modifications to capture some features of a model
company with operations across Canada and in tlitedJn
States of America. (The identity of the company is
protected by a non-disclosure agreement.) The coypa
supply chain network has a fixed set3# suppliers, each
providing a unique set of goods, some from multiple
locations. The location of the built DCs will be asen
from a pre-selected, finite set &3 potential DC
locations. Once built, the DC will receive goodsnir the
closest supplier. Consequently, the supplier networ
influences the location and capacity of the DCsyonl
through the in-bound transportation costs. It isuazed
that the suppliers have sufficient capacity to niegdl
network demand. Thg,976 outlets, organized intd33
clusters according to the first two digits of theiostal
code, receive regular shipments of a variety ofdgoan
varying quantities. To reduce the complexity of the
problem historical data is used to creategeneric
out-bound palletand to determine a fixed demand for the
generic pallet for all outlets. Further, historical
transportation costs can be used to determine arage
out-bound cost per pallet per kilometer. Assuminat ta
particular supplier uses identical pallets from @il its
locations an average-boundcost per pallet per kilometer
can be determined. The in-bound pallets are diffefer
different suppliers and are different than the lbotnd
pallet. The use of the cost per pallet-kilometectdes
avoids the need to consider truck routes, trucksypoads
and driver schedules.

The decision variables for the supply chain depigiiblem
considered in this paper will be the selection o D
location, DC capacities and outlet to DC assignmé&hé

DC locations are chosen from a predetermined set of
potential DC locations but the capacity level wile
determined by the total demand from the assignéétsu
Consequently, the model allows true variabilitg@&pacity
selection and the operational costs will not inelubsts

for unused capacity.

The supply chain design will be driven by the objexof
minimizing the in-bound transportation costs, oatxd
transportation costs, fixed DC set up costs, bugdiosts,
and operational costs. The transportation cost$ lvel
linear functions of the number of in-bound and batnd
pallets shipped. The building and operational codlisbe
modeled to include economies of scale and decrgasin
marginal costs. Consequently, these cost functimes
concave, which, together with the fixed DC set wgtc
will result in the establishment of fewer DCs wittiger
capacity levels. This feature supports the conatihd
policy in supply chain design.

The Binary, Non-Linear, Concave Optimization (BO)
model is developed and demonstrated in se&idro

capture the concept of “technology break-points" a
piecewise linearization (PWL) of the BO model igagi in
section3. Numerical examples abstracted from the model

company are given to demonstrate the effectiveméss
LINGO to solve the supply chain design models. fihal
example hasl1122 variables and216 constraints and
its solution validates the applicability of the nedd

2. Model Formulation

This paper adopts much of the notation and model
development as in [18]. The outlets, potential DC
locations, and suppliers are indexed by R, d €D,
ands € S, respectively. The binary variableg andy,,.
indicate if a distribution center is to be builtlatationd

and if distribution centerd is to provision outletr,
respectively. Since,, is binary,

Zyd,=1 Vr €R, D

deD

ensures that each outlet is assigned to a singld_Bi(p,.
be the out-bound pallet demand at outletSincex, is
binary,

Zprydr—de <0 vd €D, 2

TER

ensures that, for each DC, the total demand frenothlets
assigned to that DC does not exceed the maximum
allowable capacity leveM, where, for exampleM could

be set as the total network demand.

Clearly, the model allows complete variability, it to
M, in the selection of the capacity level for ead@.Dn
fact, the model sets the capacity level of a D&hetotal
demand from its assigned outlets. This avoids getdrto
make a priori capacity level selections.

Let k;,. be the distance in kilometers from distribution
centerd to outletr. If w is the cost of shipping one
out-bound pallet one kilometer, then the total lbotnd
transportation cost is

Tout () = w zzkdr PrYar- ()

d€eD reR

Let k,; be the distance in kilometers from the nearest
location of suppliers to distribution centerl, and letw

be the cost to ship one in-bound pallet from s@gppli one
kilometer. Let p; be the percentage of the generic
out-bound pallet that is provided by supplier Then
(pspy) is the number of in-bound pallets from supplier
r required to assemble the out-bound pallets deli/éve
outlet r. The total in-bound transportation cost is

Ta®) = D 05 ) ksa (osp)var

SES d€eD TeER

= z W Ps z ksd Z PrYar- (4)

SES deD TER

To capture economies of scale the operational globe)
costs are modeled with the nonlinear function
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B
Vo) = ) a (Z b ydr> 5)

deD T€R

wherea >0 and 0 < 8 < 1. While « and g are DC
independent, the operational cost of each DC mest b
calculated separately because the DCs have unique
capacity levels. The benefit is that the varialdstés only
charged for the actual activity level in a DC arnd for the
excess capacity that results if DCs are selected & finite

set of pre-specified capacity levels. Similarlye thuilding
costs with

S5
B(y) = Z Y (Z Dr Ydr> (6)

deD

wherey >0 and0 < § < 1. By usinga and g for all
operational costs ang and é for all land and building
costs, the assumption is that costs are independfent
location and this is likely not the case. It wobkla simple
matter to subscript the cost function parametesder to
account for location and this would not change the
complexity of the model. In practice, the cost paeters
can be approximated using regression with histbdoat
data.

In order to produce designs with fewer DCs thedixeC

set up cost
FGO=F ) xa,

deD

(7

where F is a positive parameter, is included in the
objective function.

Combining the above, results in the following binar
optimization model with linear constraints and acave
objective function.

Min fOy) = Toue @) + Tin(¥) + V() + B(y) +
F(x) (BO)
Subject to:

Z Yar =1 Vr €R

deD

Zprydr_de <0 vd €D

TER

x; €{0,1} Vvd €D

var €{0,1} Vd €D, r €R

The model is tested on nine examples abstracted diadia
available from the model company and describedlitet
1. The cost function parameters used are 256.03,

B =0.7706, y = 519.18, § = 0.5978 and F = 50,000.

The maximum capacity level is set @t = 10,000.

Table 1 Description of the test problems

Ex.| Total [Number|{Number | Number | Number

Network of of of of
Pallet | Outlets |Potential|Variables|Constraints

Demand DCs

1| 1,107 11 10 120 21

2| 1,663 10 5 55 15

3 725 8 5 45 13

4 592 9 3 3C 12

5 52¢ 6 3 21 9

6 | 12924 18 14 26€ 32

7 | 16,72€ 15 12 192 27

8 [ 27,019 10 7 77 17

9 [ 29,362 8 5 45 13

The global solver in LINGO 14 was run on a 64-bilh.
PC with two 2.50 GHz threads (cores) and with 3Z®B
RAM. All problems were solved to optimality and the
results in table 2 show the solution time in sesprile
indexes of the selected DCs and the corresponding
capacity levels, and the optimal objective functiaiue.
The excessive time required to solve examples &-08e
motivation to consider a piece-wise linearizatidnttoe
concave objective function. Another motivationhattthe
break-points in the piece-wise linearization captoee
technology break-points. While the cost functionrs a
linear, the slope of the linear function decreaaeshe
break-points corresponding to a decreased cospadkat
with a higher level of technology.

Table 2 Solution statistics for the BO model

Ex. Time Selected Ca%?cny Optimal
(sec) | DCIDs | S8 f(x, )
1 29 1 1107 824690
2 3 1 1663 | 1065610
3 1 1 725 337481
4 1 3 592 25¢,65C
5 1 2 522 342,34C
1 5934
6 145011 8 4013 |12,012173
13 9,977
1 6,756
7 985 12 9.970 10,183,400
2 9208
8 459 4 7845 (17609700
7 9,966
2 1,777
3 8,233
9 31 4 9937 19,489,200
5 9,415
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3. Piece-Wise Linearization

The concave parts of the objective function ardaegy
with piece-wise linearizations. That i§(x, y) is replaced
by

fpwl(x'Y) = Tout()’) + Tin()’) +
F(x) )

prl()’) + Bpwl(y) +

where V,,,,(y) is obtained as follows. R,,,(y) is
obtained in an analogous way.) Define the breaktpd;,
i=0,12345 where

0 <Ap< A< A< A< A< A= M 9
and denote the function values at the break-pbints

Vi = a(&)P. (10)

Define, ford € D,

Va = Zydrpr- (11)
TER

Then,

prl(j\’d) =

Vot G = 80) (3=2).
Vit o= B (2=1),
Vot G = 8 (3=52).
Vst Ga = 83) (=5

Vit Pa— A4)(

if Mg<Pg<N

if Ai<Pa=<A4,

._.

if A<ya<Ah; (12)

5!\1

), if Ay<9q<A,

) if A <Jq=<A4s

w

>

5— A

S

and,

Vo) = D Vo G- (13)

deD

The five break-pointg\;= 750, A,= 1650, A;= 2900,
A,= 5000 and A;= 10000, was motivated by the set of
five discrete capacity levels used by the model wamy.
The model was also tested using the five evenlyidiged
break-points A;= 2000, A,= 4000, A;= 6000, A,=
8000 and Az= 10000.

The BO model, and the PWL with both sets of
break-points, produced identical solutions, i.eheyt
selected the same DCs with the same capacity [éaht
is of interest is the time required to find theusimin. The
times are summarized in table 3.

Table 3. Solution times in seconds

Ex. BO PWL PWL Best
(even) |(Selected) Time

1 29 1 2 1
2 3 1 1 1
3 1 1 1 1
4 1 1 1 1
5 1 1 1 1
6 145011 868 66 868
7 985 286 151 151
8 459 186 142 142
9 31 21 6 6

In terms of solution times, the PWL model is supetd

the BO model. Except for examples 1 and 6, the PWL
model with selected break-points is superior td thigh
evenly distributed break-points. However, the nunzel
values of the break-points should be determined by
balancing the desire for fewer breakpoints agairisetter
piecewise linear approximation and by actual tetdmo
improvement levels.

Observing that the PWL model with selected breakigo

is the superior model, it is applied to the modehpany's
complete supply chain. Afte210,477 seconds the best,
non-optimal, objective function produced by LINGOr f
the BO model wa¥ (x,y) = 8, 747, 190. LINGO solved

the PWL model to optimality aftez,330 seconds and it
gave a feasible solution to the BO model wiftfx,y) =

4,432,050. The PWL model produced a solution that was
49% less costly in time that was two orders of magitetu
smaller.

4. Conclusion

A binary, nonlinear, concave optimization model was
developed for three-echelon, supply chain netwadigh
with true variability in capacity selection for the
Distributions Centers and with cost functions tegtured
decreasing marginal costs and economies of scale. A
piece-wise Iiﬁ%%gizaﬁ%%) of the objective functiovas
introduced to both improve solution times and tptoee
technology break-points (related to economies afejclt
was shown that, for the model company’s complepplu
chain, the PWL model produced a higher quality tsafu
than the BO model in time lower by orders of magpét,
when solved by LINGO.
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