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Abstract— Study in this paper is concerned with 

optimization of both quantity of order and selling 

price together, considering EOQ model for items with 

depreciating nature. It is based on the few 

assumptions like rate of demand is dependent on level 

of stock displayed on shelf as well as per unit selling 

rate, also, the space for stock display is finite. Two 

mathematical models are studied to investigate the 

further revised EOQ modelling for obtaining 

maximum profits and also develop models for such 

optimized solutions. Justification and analysis of the 

work developed and studied is done through 

sensitivity analysis and numerical examples. 

Keywords— Inventory management, cost, demand, stock 

dependent, depreciation. 

 

1. Introduction 

In the traditional models for stock management, the 

rate of demand is frequently understood to be either 

invariable or dependent on time but not dependent 

on the levels of stock. However, sensibly higher 

shelf space of a product invites higher sales of the 

goods. This depends on quality, quantity and 

demand of the product. On the other hand, lower 

quantity on display implies the assumption of less 

demand of the product. Hence, we can conclude 

that the occupied shelf space and visibility of 

certain common consumable goods influence its 

rate of demand. With the increase in purchasing 

trend, in past few years, the marketing analyst and 

experts have observed the parallel direction relation  

between demand and amount of shelf space for a 

product.  

 

2. Literature Review  

Ref [1] marked the fact that huge quantity of user 

commodities displayed in a superstore would draw 

more demand. Ref [13] also studied the direct 

proportionality between demand at the retail store 

and the quantity of displayed stock. He recognized 

an EOQ based algorithm for patter on demand 

dependent on inventory level in a power from of 

equation. He worked on a inventory model for 

multi-units stock with property of depreciation and 

demand dependent on quantity using non linear 

goal programming algorithm with resources as 

constraints. Ref [2] Offered a model based on rate 

of demand dependent on the instant replenishment 

of stock levels till the optimum level is achieved, 

and assumes that after this level the rate of demand 

becomes stable. He dismissed the idea of complete 

use of stock in one cycle time which was imposed. 

Further studied the work of [3] for delicate goods 

that decline at a regular pace. Ref [7] Worked on 

expansion of an inventory model where demand is 

dependent on level of inventory by adding to it 

casual yield. Ref [14] Studied Urban’s model for 

steadily depreciating things. [8] Further worked on 

the EOQ model in which the order is a function of 

more than one variable i.e. cost, instance, and stock 

level. Ref [15] further researched on the EOQ 

model by considering a nonlinear holding cost. Ref 

[5] Studied multi-item stock models for 

depreciating goods with demand dependent on 

stock in an assumed environment. Ref [9] gave a 

summarized and combined model of existing 

inventory-control model, product assortment 

model, and display - space availability models. Ref 

[6] Developed an EOQ model for multi-period with 

stock-dependent, and rate of demand sensitive with 
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variations in price. He suggested a model for 

selling depleting stock from multi outlets, under uni 

- management with restrictions of stock and net 

available display space. Other papers related to this 

area are [4], [10], [12] and others. 

Ref [11] showed, “Probability of high sales with 

reference to the high amount of display quantity. 

However, this policy followed in extreme may 

leave an adverse effect as well”. Hence, this paper 

primarily studies optimum level of inventory, to 

show the facts that the majority trade outlets have 

restricted display area and secondly studies how to 

avoid an unconstructive notion on customer 

because of extremely accumulated stock 

customer’s way. As the rate of demand is 

influenced by level of inventory as well as selling 

price, these factors are thus considered to establish 

an inventory model in which the rate of demand on 

quantity of stock displayed and the selling price. 

Then, the essential assumptions for the proposed 

model and the notations used in the paper are 

provided. Further, algorithm for mathematical 

model is set up. The properties of the optimized 

result are discussed along with presentation and 

justification of solution algorithm and numerical. A 

simpler algorithm for optimized cycle time, 

economic order quantity and re - ordering level is 

discussed. Then the last section is to discuss the 

conclusion and future scope of the study. 

 

3. Problem Formulation 

This problem is to establish an optimized value of t, 

P and Y so that the net mean profit in a process of 

replenishment is optimal. 

4. Notations And Assumptions 

Following assumptions and notations are used 

for studying, a single-item deterministic 

inventory model for depleting stock with rate of 

demand   dependent on price and stock. 

1) No Shortages allowed. 

2) Upper limit of display quantity is B as per 

available space and      requirement. 

3) Instant and infinite rate of Replenishment. 

4) Known and fixed procurement cost K per 

order. 

5) Known and fixed purchase cost c per unit 

and the holding cost h per unit per unit 

time. The fixed selling price p per unit is 

independent variable within the 

replacement rounds, where P > C. 

6) The continuous rate of depreciating θ (0 ≤ θ 

< 1) is only applicable to current in hand 

stock. Two cases are possible for the cost of 

depreciating goods (1) there is a non 

positive scrap value that is, value is either 

negative or zero; (2) There is a positive 

disposal cost, that is, value which is 

positive. Note that C > s (or = s). 

7) All replacement trends are similar. 

Therefore, a usual cycle of scheduling with 

length = t (i.e., the range of schedulling is 

[0, T]). 

8) The rate of demand R(I(t), P) can be 

calculated by:- 

  R(I(t), P) = α ( P) + β  I (t), where I(t) is the             

level of  inventory level at any time t, β ≥ 0, 

and α ( P) is a non-negative function of P 

with α ' ( P) = d α ( P) /dP  < 0. 

9) Urban (1992) gave a theory which said, "it 

may be desirable to order large quantities, 

resulting in stock remaining at the end of 

the cycle, due to the potential profits 

resulting from the increased demand." 

Accordingly, the starting and final points in 

levels of inventory Y may not be zero (i.e., 

Y ? 0). If, order quantity Q enters the 

inventory system at time t = 0. Therefore, 

I(0) = q + Y. In the interval [0, t], the 

depreciation in inventory is cumulative of 

demand and depreciation. At any time t, the 

inventory level falls to y, i.e., I(t) = Y. The 

starting and final points in inventory level y 

are known as ordering point. 

 

4.1 Mathematical Model and Analysis 

At an instant t = 0, the level of inventory I(t) has 

its maximum value (with I ≤ B) because of 

replenishing of economic order quantity Q. Then 

the level of inventory reduces slowly to Y till the 

last day of the cycle time at t = T mainly because 

of demand and secondly due to depletion. A 

graphical representation of such system is shown 

in Figure 1.  

 

 

 

 

 

 

 

Figure 1. Graphical Representation of Inventory 

System 

Level of inventory at any time t can be represented 

by:- 
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I ' (t) + θ I (t) = −R(I (t), P) ,  0 ≤ t ≤ T ,                                                           

 (

1) 

Considering the boundary condition I (t) = Y. 

Therefore, solution of (1) is given by, 

I(t)=              
    

     
                                                       

    (2)      

using (2), the net profit tP over the period [0, t] is 

denoted by, 

tP = ( P − C)               
 

 
– K– [h +θ 

(C + s)]           
 

 
        

= (P − C)α ( P) t –K+ [( P − C)β − h −θ (C 

+ s)] x                  
    

     
             

 

 

      

= ( P − C)α ( P) t –K+ [( P − C)β − h −θ (C + s)] x 

 
 

   
   

    

   
              

    

   
      

        (3)         

Thus, the average profit per unit time is 

AP = tP / t 

      ={( P − C)α ( P) t –K+ [( P − C)β − h −θ (C + 

s)] x  
 

   
   

    

   
              

    

   
   /t  

                                                                             (4)          

           (4) 

4.1.1 Necessary conditions: 

Taking the first derivative in (4) w.r.t “t”, we get,  

= ∂AP / ∂t  

=
 

                            

       
 

   
    

    

   
                

                 

     (5) 

Using Appendix 1, we get that [(θ + β )te
(θ

 
+β

 
)t
 − 

e
(θ

 
+β

 
)t
 + 1] > 0. 

And, ( P − C)β is the profit per unit of inventory 

and [ h + θ (C  + s) ] is the total of holding cost 

and cost of depreciation per unit inventory.  

If, 1 = ( P − C)β  and 2 = h + θ (C + s) and based 

on the values of  1 and  ∆2 , two cases are 

discussed for finding the optimal value of t* = t : 

Case 1)  ∆1≥∆2 (profit from inventory) 

∆1≥∆2  is that the profit per unit inventory is 

greater than the total of carrying and depreciation 

costs per unit inventory. Implies, inventory is a 

profit giving factor. Hence from Appendix 1, ∂AP 

/ ∂t > 0, if ∆1 ≥ ∆2, (4) becomes an increasing 

function of t with I(t) ≤ B. 

Hence, we can say that piling up of inventory up to 

the optimum level B of inventory can be exhibited 

in shop shelves without creating a adverse 

perception of consumers.    

Hence I(0) = B, and this implies, 

t=  1/(θ + β)  ln((B(θ + β)+ α(P))/(Y(θ + β)+ 

α(P)))          (6) 

This means that t is dependent on P and Y. Putting 

(6) in (4), it shows that AP is a function of Y and 

P. The necessary conditions for optimization of AP 

are ∂AP / ∂ Y = 0 and ∂AP / ∂ P = 0. Hence, two 

conditions can be derived: 

          

     

             

                    
              

              
  

                                                                             (7) 

                     

   
  

 
           

   
     

    

   
 

        
     

   
   

=-            
 

   
    

    

   
  

                          
  

  
 

                                                                             (8) 

And,  

(1) 
  

  
 

          

                            
  

     (9) 

Thus, equations (7) and (8) gives optimized values 

P* and Y*of P and Y respectively. Putting P* and 

Y* in (6), the optimized value of t* is obtained. 

Validity of sufficient conditions cannot be clearly 

justified analytically as AP(Y, P) is a complex 

function. However, the optimal solution is possible 

by putting numerical values in illustrations. Firstly, 

it was assumed in case1 that building inventory is 

profitable. Secondly, AP is a continuous function 

in Y and P over a compact set [0, B] X [0, L], for a 

sufficiently large number L. Hence, AP will have a 

maximum value. Also, the solution obtained 

satisfies (7) and (8). If this solution obtained is 

unique in nature, then it is the optimized value, 

otherwise, we will have to put y and p in (4) and 

find the optimized value.          

 Case 2)    ∆1<∆2 (no profit from inventory) 

Initially, differentiating AP partially w.r.t Y, to get 
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∂AP/∂Y=  1/t [(∆1-∆2 )  1/(θ+β) (e^(θ+β)t-1)]<0                            

          (10) 

Next, substitute Y*=0 in (4) to get AP as a 

function of P and t. 

Hence, the necessary condition for values of AP to 

be optimum is ∂AP/∂P=0 and  ∂AP/∂t=0,  giving 

the following cases: 

(i)  

        

           
                                                                                                   

(11) 

 

(ii)  

                        

 
            

   
               

                                                                                

(12)  

Values of t and P can be obtained from (11) and 

(12). Putting Y*= 0 and the values of t and P 

obtained from (11) and (12) in (2), we get, either 

I(0) < B or I(0) ≥ B. If I(0) < B, then optimum 

values are t*= t, P*=P and I(0) = q*. If I(0) ≥ B, 

then for I(0) = B, we get, 

t = 1/(θ + β) ln((B(θ + β)+ α(P))/(α(P)))          (13) 

This is a function of P. Substituting Y* = 0 and 

(13) in (4), to get AP as a function of P. Hence, the 

necessary conditions for AP to have maximum 

value is dAP / dP = 0. Therefore, 

                                 

     
  

 
             

     
  

    

     

         
     

     
   

=             
    

        
            

             
  

  
                                                                           

(14) 

Where t is as defined in (13) and in 

  

  
 

       

                   
                                      (15)   

The optimum value P* is calculated from (14), 

putting P* in (13), the optimum value t* is 

determined.             (15) 

5. Results  

The above solved model for finding an optimized 

value of selling price (P*), ordering point (Y*), 

cycle time (t*), and economic order quantity (q*) 

can be summarized as given: 

1. Solving equations (7) and (8), to get the values 

of P and Y. 

2. When ∆1 ≥ ∆2, then P*=P, Y*=Y, q*= B – Y* 

and the optimal value T* can be obtained by 

putting p and y in (6).  

3. When ∆1 < ∆2, then take y*=0. Solving (11) and 

(12) to get the values of T and p. Substituting y * = 

0, p and T in (2) and find I(0). If I (0) < B, then the 

optimized values are as; T* = T, p* = p and Q* = 

I(0). 

4. I (0) > B is given by solving equations (11) and 

(12) simultaneously for solutions t and P, and the 

optimized values of P* can be obtained by (14) and 

t* is obtained by putting P* in (13), and q* = I (0) 

by putting P* and t* in (2).  

5.1 Numerical examples 

To illustrate the above discussed model, numerical 

example given below are solved. .Initially, take the 

function α (P) = xP−r, where x, r are negative 

constants. That is, it is reflected that demand is a 

constant elasticity s of the price. 

Example 1. Let K = Rs.10 per cycle, x = 1500 

units/ time, h = Rs.0.5 per unit /time, s = Rs.10 

/unit, r = 3.5 and θ = 0.15. Using the above 

discussed methodology, the optimized solution thus 

obtained in the following example. Since (4), (6), 

(7), (8), (9) nonlinear in nature, and are solved 

using software. The computed optimized values of 

P, Y, t, q and AP with respect to different values of 

β, B, C are shown in Table 1(given in the last) 

Table 1 shows when ∆1 ≥ ∆2 and the following 

conclusions are made,  

1) An increasing value of β results in 

increased values of q* and AP*, and lower 

values of Y*, P * and t*. It shows that 

increase in rate of demand will result in 

increased optimal EOQ and Average 

contribution, and decrease in optimum 

point of ordering, cycle time and selling 

price. 

2) An increasing value of β results in 

increased values of q*, t* and AP*, but 

decreasing values of Y*and P*. Hence, an 

addition in display space will give 

increase in optimized EOQ, cycle time and 

average contribution, but decrease in 
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optimal point of ordering point as well as 

selling price. 

3) Higher value of C gives higher values of 

q* and t*, and lower values of Y* and 

AP*. Hence, the higher cost of purchasing 

gives higher optimal cycle time and 

economic order quantity, but a lower 

optimal point of ordering and mean profit. 

Example 2 Let K = $15/cycle, x = 1500 units / 

time, h = $0.5 per unit / time, c = $1.5 /unit, s = $10 

/ unit, r = 3.8, θ = 0.15 and B = 350. Using Step 3 

of the discussed method, the optimum point of 

ordering (Y*) = 0. Solving equations (2), (4), (11) 

and (12) in software. The computed results for the 

optimal values of P, q, t and AP with respect to 

different values of β are shown in Table 2 (given in 

the end). 

Table 2 shows that an increasing value of β results 

in increased values of q*, P*, t* and AP*. Which 

implies increased rate of demand results in 

increased optimum EOQ, selling cost, phase time 

and mean profit when ∆1 < ∆2.phase time and 

mean profit when 1 < 2. 

6 Conclusions 

This paper is summarized about an inventory 

model for depreciation of goods considering the 

demand as dependent variable on selling price and 

inventory on shelf. Also, a upper limit of stock on a 

shelf in a retail shop, is imposed, so as not to leave 

a negative impression on consumers. Under such 

situation, a model is discussed and proposed for 

maximum profits. Following which, the 

characteristics of the optimized solutions obtained 

are mentioned. Also, a numerical example and its 

solution algorithm is solved to elaborate the 

application and usefulness of the model. A simpler 

methodology is established to evaluate the 

optimum series time, economic quantity of order 

and re order point. Further, we study few 

spontaneously rational supervisory outcomes. Like, 

if per unit profit from inventory is greater than per 

unit cost of inventory, then the building up stock is 

cost-effective and therefore the establishment of 

stock can reach to the optimum allowed limit. 

Otherwise, not. Also, the closing stock must be nil. 

Furthermore, application of the discussed model is 

illustrated further using few numerical examples. 

The results helps to analyze the importance of 

outcome of selling price based on stock on the 

perception of system, and hence is important factor 

while working on development of inventory 

models. The effects of various factors on decision 

parameters are shown by using sensitivity analysis. 

4.1 Scope for Future Study 

Discussed models can be enhanced on considering 

price increases, capacity benefits, and credit of 

trade along with others. Along with, the concerned 

to expand the planned form of multi-unit stock with 

finite display space or with consideration of the rate 

of demand in a polynomial function with respect to 

demand dependent on in-hand inventory. Finally, in 

future this study can be extended to variable and 

stochastic demand pattern from the deterministic 

function. 
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Appendix 

 

Case 1:- ∆1 ≥ ∆2  

 AP is an increasing with respect to T. 

To show  ∂AP/∂T>0 take,  

F(x) = xe
x
- e

x
+1, for strictly positive x (A.1)  

From A.1, we have f’(x) = xe
x
 > 0.  

 f(x) is an increasing function with respect 

to x ≥ 0. 

 f(x) > f(0) = 0   (A.2) 

Assume x = (θ + β)T, from A.1 and A.2, to get, 

(θ + β)Te
(θ + β)T

-e
((θ + β)T)

+1 > 0, for strictly positive 

T.     (A.3) 

Using (5) and (A.3), we have ∂AP/∂T>0  

 

Table 1 ( 1 ≥ 2) 

β B C      Y* q* P* t* AP* 

0.20 100 1.0 29.7176 70.2923 6.036369 2.995083 53.8080 

0.25   27.5519 72.4580 5.057348 2.228933 65.6780 

0.30   21.6559 78.3540 4.401510 1.874283 74.6845 

0.35   12.9293 87.0806 3.916533 1.700831 81.5774 

0.40   1.5186 98.4913 3.542568 1.626914 86.6178 

0.25 100 1.0 27.5519 72.4580 5.057348 2.228933 65.6780 

 110  25.7993 84.2106 4.916374 2.437729 66.5223 

 130  19.8742 110.1357 4.727227 2.927701 67.8531 

 150  12.1958 137.8141 4.618074 3.478271 68.6822 

 170  3.9875 166.0224 4.552949 4.059206 69.1926 

0.25 100 1.2 47.2088 52.7021 5.192384 1.538303 79.0717 

  1.4 38.7816 61.2283 5.099465 1.811719 72.2745 

  1.6 27.5519 72.4580 5.057348 2.228933 65.6780 

  1.8 14.7001 85.2009 5.09415 2.827995 59.3962 
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Table 2  ( 1 < 2) 

β q* P*  t* AP* 

      

0.12 162.1660 1.586133  0.666560 131.4941 

0.14 169.6222 1.986959  0.396068 132.4196 

0.17 181.8270 1.896776  0.147557 134.1735 

0.19 191.5231 1.607169  0.287270 135.3116 

0.22 211.5050 1.127088  0.486686 137.3604 

 


