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Abstract— We consider a serial supply chain with 

multiple stages in a centralized control scenario. 

Within this supply chain, the first stage faces a 

supplier selection decision for a particular product 

that experiences a price-sensitive demand. The 

demand is represented as a logit function, which 

parameters account for the range and price sensitivity 

factors. Suppliers are capacitated and offer their 

individual fixed unit price with a corresponding 

quality level for the product. The buying stage needs 

to decide which suppliers to choose and how to 

allocate orders, determining the optimal inventory 

policy for all stages and the retail price to offer to end 

customers, while maximizing the total profit of the 

supply chain. The problem is formulated as a mixed 

integer nonlinear programming model and a heuristic 

approach is proposed to generate an approximate 

solution. Then, we analyze a special case that 

considers only one uncapacitated supplier and a 

buyer with price-sensitive demand in a serial supply 

chain. An efficient heuristic is developed for this case 

to obtain a near optimal solution in a timely manner. 

Finally, we provide a series of numerical examples to 

illustrate our results and analyze the impact of the 

parameters within a sensitivity analysis. 

Keywords— supplier selection, inventory replenishment, 

price-sensitive demand, logit demand function, serial 

supply chain.  

1. Introduction 

A typical supply chain consists of multiple entities 

such as suppliers, manufacturers, wholesalers, 

retailers, and the customers. The incurred activities 

in a supply chain system include supplier selection, 

order allocation, production, distribution, and 

inventory management. Given today’s competitive 

global market, it is essential that all the supply 

chain entities act under one policy to improve 

supply chain performance as a whole while 

reducing the cost of the system.  

 

As a result, researchers and companies have 

devoted their efforts in the development of 

integrated decision models in supply chain 

optimization for years. Given the prevalence of 

both purchasing and inventory policies, much of 

the recent research has been focused in tackling 

these two problems simultaneously. For instance, 

Ref. [1] presents a multi-product, multi-period 

inventory lot-sizing model considering supplier 

selection. Ref. [2] introduces a multi-period, multi-

supplier, and multi-item inventory model with 

imperfect quality. Ref. [3] proposes a mixed integer 

nonlinear programming (MINLP) model to 

determine the order quantities placed to the 

selected suppliers as well as an optimal inventory 

policy for a serial supply chain. Subsequently, Ref. 

[4] presents a dynamic network structure to 

represent a multi-supplier, multi-stage, and multi-

period operational planning problem. Ref. [5] 

extends the results from [3] by accounting for 

transportation costs.  

Pricing is a crucial strategic decision for a 

company. The first effort incorporating pricing into 

supply chain management can be dated back to [6]. 

Recently, [7] proposes a joint marketing-inventory 

model in a two-echelon supply chain with discount 

promotion and price-sensitive demand in order to 

determine the optimal ordering, shipping, and 

pricing policies. Ref. [8] investigates a joint pricing 

and lot-sizing problem in a two-echelon supply 

chain considering a finite production rate. 

Researches coordinating pricing and supply chain 

related strategies for a multiple period supply chain 

system include [9],  [10], and  [11]. 

The supply sourcing process is considered to be 

of high complexity, usually including multiple 

stages. Initially, the buying entity may encounter an 

overwhelming number of suppliers for the needed 

product, and hence a first analysis of all the options 
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is usually conducted first. There is vast research on 

how to rank suppliers using more qualitative 

methods that consider multiple criteria and the 

personal preferences of decision makers. The result 

of this first analysis may still finish with a reduced 

pool of suppliers, where an ultimate selection 

process must be performed, together with the 

allocation and lot sizing decisions.  For the first 

stage plenty of methodologies have been applied by 

previous researches [12]. The main criteria under 

consideration are unit price, capacity, quality, setup 

cost, and delivery time. Given the significance of 

supplier selection in supply chain management, 

there are several research papers that consider joint 

models in pricing and supplier selection. Ref. [13] 

proposes an integrated procurement, production, 

and pricing model for a manufacturer sourcing 

from multiple capacitated suppliers, facing price-

sensitive market demand for one product. Ref. [14] 

introduces a problem where a single buyer faces 

decisions of supplier selection, lot-sizing, and 

pricing in a multi-product, multi-period setting. 

Ref. [15] considers a single item EOQ model with 

multiple capacitated suppliers providing all-unit 

quantity discounts. Later, [16] extends the model in 

[15] to a serial supply chain. 

Most of the foregoing models in pricing, 

inventory management, and procurement strategies 

assume a linear or a power demand function. 

However, there are very few papers providing a 

justification for choosing one demand function 

instead of the others [7], [17]. In fact, the logit 

demand function is a more precise demand curve, 

which can serve as a global price-sensitive demand 

function.  Given the gap in the literature, we further 

investigate the application of the logit demand 

function to a serial supply chain, aiming to 

determine the retail price, the sourcing strategies, 

and the corresponding inventory policy maximizing 

the whole system’s profit. Besides, we generalize 

the algorithm presented by [16] and apply it to 

solve an integrated pricing, supplier selection, and 

inventory replenishment problem with any price-

sensitive demand function.  In addition, we develop 

a heuristic algorithm for a special case of a serial 

supply chain with a single uncapacitated supplier 

and show its efficiency. 

The remainder of this paper is organized as 

follows. Section 2 presents the problem description 

and the model formulation. Section 3 introduces the 

proposed heuristic algorithms. Two numerical 

examples are presented in Section 4, illustrating the 

efficiency of our proposed algorithms. Section 5 

provides an analysis with respect to the number of 

preferred suppliers and the pricing parameters. 

Lastly, Section 6 concludes the paper and provides 

future research directions.  

2. Model Formulation 

We consider a serial supply chain where raw 

materials or final products flow sequentially from 

potential suppliers through the manufacturing site, 

the local warehouse, the regional warehouse, and 

finally to the distribution center (DC). Figure 1 

demonstrates the serial supply chain in 

consideration. The manufacturer makes purchasing 

decisions on raw materials from various potential 

suppliers. Multiple orders can be submitted to 

selected suppliers within one order cycle. However, 

there is no splitting on any order, which means the 

manufacturer only takes one order from one 

supplier at a time. The finished products are 

transported to the subsequent warehouse and DC as 

requested. The inventory at every stage is used to 

replenish the inventory in the succeeding stage 

without shortages; that is to say, orders are placed 

by DC to the warehouse, by the warehouse to the 

manufacturer, and by the manufacturer to the 

preferred suppliers. There are no storage capacity 

restrictions at all stages. Lastly, the inventory at DC 

can be immediately used to meet the demand from 

the set of customers without backlogging or lost 

sales. We assume the demand rate at the last stage 

is dependent on customers’ response to the retail 

price and we represent this price-sensitive demand 

with the logit demand function. Let D  be the 

demand rate and p  be the retail price respectively, 

the logit demand function can be expressed as: 

 

 
,

1

a bp

a bp

e
D C

e

 

 



  

where 2, 0a b   . 
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Figure 1. Demonstration of raw material and product flow in a serial supply chain 

Given the entire system is managed by a single 

company, we are looking to find the best pricing 

policy, procurement strategy, and inventory 

replenishment policy simultaneously so that the 

overall profit for this centralized system is 

maximized over the infinite time horizon. We 

assume that the lead times between any pair of 

consecutive stages are fixed or zero. Shortages are 

not allowed at any stage. 

According to previous research, the optimal 

stationary ordering policy for a serial supply chain 

must be nested and able to order only when the 

inventory level is zero. The nested policy refers to 

the situation that, whenever a stage orders, all its 

downstream stages also order. Therefore, the order 

quantity placed at one stage is always an integer 

multiple of the order quantity placed at the 

downstream stages. The zero-inventory-ordering 

policy requires the orders to be placed only when 

the on-hand inventory drops to zero [18]–[20].  

In addition, researchers have also proved the 

optimality of combining two consecutive stages 

when the ratio of setup to unit echelon inventory 

cost for a stage is not greater than that of the 

immediate downstream stage [19], [20].  

Based on these assumptions, we define the 

corresponding parameters and decision variables as 

follows: 

Sets 

i   stage, where  1,...,i r , 

t  supplier, where 1,..., .t n  

 

Parameters 

iK   setup cost of supplier i , where 1,...,i r , 

ic   unit purchasing cost of supplier i , where 

1,...,i r , 

iF   capacity of supplier i , where 1,...,i r , 

iq   product quality level from supplier i , 

where 1,...,i r , 

aq   required product quality level from the 

manufacturer, 

tKS   setup cost at stage t , where 2,...,t n , 

th  unit inventory holding cost at stage t , 

where 1,...,t n , 

te  unit inventory echelon cost at stage t , 

where 2,...,t n , 

m   overall number of orders within an order 

cycle, 

C   market size of the item, 

a   price range factor, 

b    price-sensitive factor. 

Decision Variables 

D   DC’s demand rate,  

p    unit selling price, 

iJ   
number of orders from supplier i  within 

an order cycle, where 1,...,i r , 

tQS   
order quantity placed at stage t , where 

2,...,t n , 

iQ   
order quantity submitted to supplier i , 

where 1,...,i r , 

Q    
order quantity from all selected suppliers 

within an order cycle, 

1iN   

multiplicative factor for order quantity 

submitted to supplier i , where 

1,...,i r , 

tN   

multiplicative factor for order quantity 

submitted to stage t , where 

2,..., 1t n  . 
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Figure 2. Demonstration of the zero-nested inventory policy in a three-stage serial supply chain 

Figure 2 illustrates an example of a three-stage 

serial supply chain, where two suppliers are chosen 

as raw material providers. Three orders are placed 

to supplier 1 while supplier 2 delivers twice during 

an order cycle. In addition, the value of 2N  is 2 for 

this example. 

The objective function is to maximize the total 

profit per time unit for this serial supply chain 

system (Model SM ):  

Maximize, 

2
1 1 1

1

2 2

2

1

2

s

r r
r

i i i i ii i
i i

i

n n
t

t t

t tt

Z Dp

h J Q J c QD
J K D

Q Q Q
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D QS e
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 
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i

Q J Q
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DQ J
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Q
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,
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J q Q q J
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1

,
r

i

i

J m

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 

 
,

1

a bp

a bp

e
D C

e

 

 



 (6) 

1 2 ,      1, ,  ,i iQ N QS i r    (7) 

1
,      2, ,  1,

t t t
QS N QS t n


     (8) 

1 1, integer,    1, ,  ,iN i r    (9) 

1, integer,      2, ,  1,tN t n     (10) 

0, integer,    1, ,  ,iJ i r    (11) 

0,    1, ,  ,iQ i r    (12) 

0, 2, ,  ,tQS t n    (13) 

0, 0.D p   (14) 

The first term in the objective function 

represents the revenue per time unit at DC. The 

second component accounts for the cost per time 

unit incurred at stage 1, which are setup cost, 

holding cost, and purchasing cost. The last 

component in the objective function accounts for 

the setup and holding costs for the remaining 

stages. Eq. (2) denotes the overall order quantity 

from all selected suppliers within an order cycle. 

Constraint set (3) illustrates the supplier’s capacity 

limit. Constraint (4) ensures that the average 

quality level from the selected suppliers satisfies 

the manufacturer’s required quality level. 

Constraint (5) shows the total number of orders 

submitted to all selected suppliers during an order 

cycle. Constraint (6) is the logit demand function. 

Constraint sets (7) - (10) guarantee the nested and 

zero-inventory ordering policy. Constraint (11) 

requires the number of orders placed to each 

selected supplier within an order cycle to be an 

integer. Constraint sets (12)-(14) ensure the 

properties of order quantities, DC’s demand rate, 

and the selling price. 
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3. Algorithms 

3.1. Heuristic algorithm for a serial supply chain 

The model under consideration becomes complex 

when the number of suppliers and stages increase. 

Furthermore, in order to illustrate accurately the 

price-demand relationship, we propose to use the 

logit demand function, which results in more 

complicated computational efforts compared to the 

linear demand function and the power function.  

Therefore, to improve the computational efficiency, 

we develop a heuristic algorithm to obtain near 

optimal solutions to the proposed model. This 

heuristic is based on the property of the logit 

demand function and the power-of-two (POT) 

inventory policy. The POT policy has been applied 

by researchers and proved to be computationally 

efficient in determining near optimal inventory 

levels in supply chain systems [3], [16], [21]–[23]. 

Proposition 1. The optimal selling price for Model 

sM  is greater than the point where the price 

elasticity of demand is 1. 

Proof. See [24]. 

Proposition 1 can be extended to the 

development of a lower bound on the optimal price, 

denoted by p
, with respect to any demand 

function except the power function, which has a 

constant price elasticity of demand at all prices 

[16].  

The algorithm starts by calculating an initial 

order quantity at each stage and for each supplier 

using the EOQ formula and the initial selling price, 

which is a lower bound on the retail price based on 

Proposition 1. Let 
0
iQ be the initial order quantity 

submitted to supplier i  and 
0
tQS  be the initial 

order quantity submitted at stage t . That is to say, 

we have: 

( )
0

( )
1

2
,   1, , 

[1 )]

i
a bp

i a bp

Ce
Q i r

K

h e

 

 
  


, 

and  
 

 

0 2
  0,  2,3,

1

a bp

bp

t
t a

t

Ce
QS t n

e e

KS
 

 
   

 
 

. 

Then, we adjust the order quantity from stage n-

1 to stage 1 in order to make the multiplicative 

factors be multiples of two using the POT 

procedure. 

POT procedure [3], [16], [23] . 

Step 1. If 
POT
nQS  is known, go to step 2. 

Otherwise, let 
0POT

n nQS QS . 

Step 2. For , 1,...,3,2t n n  , find the integer y , 

such that 
0 1

1 1
2 2POT POTy y

t ttQS QS QS

 
  . 

If 

0 1
1

0
1

2

2

y POT
i

y POT
i

t

t

QS QS

QS QS






 , let tx y  and 

12POT POT
t t

xtQS QS  .  

Otherwise, set 1tx y   and 

12POT POT
t t

tx
QS QS  . 

Step 3. For   1, , i r  , determine the integer y , 

such that 
0

2
1

22 2 Ty yPOT PO
iQS Q QS  . 

If 

0 1
2

0
2

2

2

POT
i

OT

y

Py
i

Q QS

QS Q



 , let 1ix y and 

1
22POT POTi

i
x

Q QS .  

Otherwise, set 1 1ix y   and 

1
22POT POTi

i
x

Q QS . 

 

 Once we determine the order quantity at each 

stage, i.e., 3, 2, ,POT
tQS t n   and the order 

quantity for each supplier, i.e., ,, 1 , POT
iQ i r  , 

it is necessary to find the number of orders to be 

submitted to each selected supplier, i.e., 

, 1, , iJ i r   so that the suppliers’ capacity and 

quality constraints are not violated.  Notice that the 

capacity and quality constraints are only related to 

the supplier selection problem at stage 1. 

Therefore, model 1M  is developed and solved 

given the order quantity from each supplier, i.e., 

,, 1 , POT
iQ i r  . 

Maximize, 

2
1 1 1

1

1 2

r r
r

i i i i ii i
i i

i

h J Q J c QD
Z Dp J K D

Q Q Q

 



 
    
 
 

 
  

(15) 

subject to constraint sets (2-6), (11-12), and (14). 

After obtaining updated p  and , 1, , iJ i r   

values by solving Model 1M , we can rewrite the 

objective function of  Model sM  as a function of 

the order quantity at the last stage, i.e., nQS .  
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Maximize, 

 
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(16) 

where 21 1 1 1. . ,,  . ,i i n rN N Nm i    and 

1 1 2,3, 1... ,t t ntm N N tN n     . Notice that 

nQS  is independent of the supplier capacity and 

quality constraints. Therefore, by taking the first 

derivative and setting it to zero, we are able to 

derive a closed form expression for nQS : 
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 (17) 

Then, we can solve Eq. (17) for nQS  as follows: 
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                                                               (18) (1) 

where 21 1 1 1. . ,,  . ,i i n rN N Nm i      and 

1 1 2,3, 1... ,t t ntm N N tN n     . Taking the 

second derivative of sZ  with respect to nQS , we 

get  

 
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Clearly 

2

2
0

n

sZ

QS

d

d
 . Hence, we conclude that sZ  

is strictly concave in terms of nQS and therefore 

Eq. (18) leads to the maximum profit of Model 

sM . 

Lastly, we use the updated selling price obtained 

by solving Model 1M  and the refined value of 

nQS  to repeat the foregoing procedure until the 

multiplicative factors and the number of orders 

from each supplier remain unchanged. Hence, we 

terminate the algorithm and report the 

corresponding results. Next, we provide the 

detailed steps of the procedure. 

Heuristic algorithm 1 

Step 1. Set 0k  , derive the initial selling price 

0p  and 0D  according to Proposition 1. 

Step 2. Calculate 
k
tQS , 2, , t n   and  

k
iQ ,   

1, , i r  as follows: 

( )

( )
1

2
,   1, , 

[1 )]

i
a bp

k
i a bp

Ce
Q i r

K

h e

 

 
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
, and 
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2
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 

 
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 
 

. 

Step 3. Determine 
POT
tQS , 2,3,t n   and 

POT
iQ , 1, , i r    using the POT procedure. 

Step 4. Solve Model 1M  given ,, 1 , POT
iQ i r  , 

to obtain the updated retail price p  and the number 

of orders submitted to each selected supplier, 

1,,  , iJ i r  . 

Step 5. Update nQS  using Eq. (18). 

Step 6. If 0k  , go to step 2. Otherwise, check if 

the number of orders for each supplier 

1,,   , iJ i r  , and the multiplicative factors 

remain unchanged for two consecutive iterations. If 

so, terminate the algorithm and report the result as 

kp , iJ , ,POT
iQ  1iN , 1, , i r  , 

POT
tQS , 
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2,3,t n  , and 2,3, , 1,t t nN    . Else, let 

1k k   and go to step 2. 

 

3.2 Heuristic algorithm for a single 

uncapacitated supplier in a serial supply 

chain 

In this subsection, let us consider a special case in a 

serial supplier chain, where there is only one raw 

material provider without quality and capacity 

constraints.  

3.2.1 An EOQ model with the logit demand 

function  

First, let us consider a two-stage supply chain with 

one supplier and one retailer. The retailer’s demand 

is price-sensitive, which can be denoted by the logit 

demand function shown in Eq. (6). Let c denote the 

unit purchasing price and K represent the setup 

cost per order. Moreover, let 1h  be the unit holding 

cost and oQ  be the order quantity placed to the 

supplier. The retailer places orders periodically for 

the purpose of maximizing the retailer’s profit per 

time unit, denoted as follows (Model oM ): 

Maximize   1 ,
2

o
o

o

h QDK
Z D p c

Q
          (19) 

subject to 

, , 0.op D Q                          (20) 

The first and second derivatives of oZ  with 

respect to oQ  are 1

2 2
o

hDK

Q
  and 

3

2
 

o

DK

Q
 , 

respectively. The fact of 

2

2
0

o

Z

Q





 indicates that 

the objective function is strictly concave with 

respect to oQ . Therefore, the optimal order 

quantity can be derived as: 

*

1

2
.o

DK
Q

h
                           (21) 

   When substituting 
*
oQ  into (19), we have: 

Maximize   12 .oZ D p c DKh            (22) 

Next, we derive an expression to compute the 

optimal price 
*p  considering the logit demand 

function in Eq. (6). The corresponding proposition 

is proposed as follows: 

Proposition 2: The following three statements hold 

true for the EOQ model with the logit demand 

function: 

(1) The point p
, where the price elasticity of 

demand equals 1, is a lower bound of the 

optimal price 
*p . 

(2) The optimal price 
*  p is the lowest price 

which satisfies the following equation: 

  11 .
2

a bp Kh
e bp b bc

D

 
        (23) 

(3) Let 
mp  be a price point equal to 

a

b
 . 

Then, 

i. if 12 –a b Kh C bc   , then 

*  ,
a

p p
b

 
  
 

,  

ii. if 12 a b Kh C bc    , then 

*  
a

p
b

  , 

iii. and if 12 –a b Kh C bc   , then 

* 2
,

a
p p

b

 
  
 

.   

Proof.  

Statement (1) follows from Proposition 1. Now, 

differentiating (22) with respect to p , we get 

 
  11

21

a bpo

a bp

dZ KhD
e bp bc b

dp De

 

 

 
     

   

(24) 

By setting 0odZ

dp
 , we have: 

    11 0.
2

a bp Kh
G p e bp b bc

D

 
       (25) 

Eq. (25) proofs statement (2). Since 

 
 

 
2

1 1
21

a bp

a bp

dG p Khb
b e

dp De

 

 

          

    (26) 

 

and 
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   

 

 

1

2

2

2

3
2

2

2

4
0

2 1

a bp

a bp

a bp

Kh

D

d G p

dp

D

b e

b
b

e
e

 

 

 



 
   

   
 

 

(27) 

then  G p  is strictly convex.  

At p
, the price elasticity of demand is equal to 

1: 

 
1

1
a bp

bp

e



 




, 

which implies that  G p
 is positive. In addition, 

the price point 2a b  is an upper bound for 
*  p  

[24]. Clearly, as p  approaches 2a b , 

 G p  , and hence 
* 2

,
a

p p
b

 
  
 

. At 

the point 
mp , we have 

  12mG p a b Kh C bc    . 

If this is negative, since ( )G p   is strictly convex, 

we conclude that 
*p a b  . On the other hand, if 

 mG p is equal to zero, then 
mp satisfies Eq. (23), 

and hence 
*p a b  . This proves statement (3). 

□ 

3.2.2 A pricing and inventory replenishment 

model in a serial supply chain 

When extending Model oM in Subsection 3.2.1 

to multiple stages, with known setup cost and 

holding cost for each stage, we are able to write 

down the corresponding MINLP formulation as 

follows (Model osM ): 

Maximize, 

 

1

2 2

1

2 2

os

n n
o t

t t

t to t

Z D p c

h Q KSDK
D QS e

Q QS 

 

   
      
   

 
,  (28) 

subject to 

1 2oQ N QS , (29) 

1,      2, ,  1t t tQS N QS t n    , (30) 

1 1,N integer , (31) 

1, ,      2, ,  1tN integer t n    , (32) 

  , , ,  0,  2,3, ,o tp D Q QS t n   , (33) 

and (6). 

Now, we develop a heuristic algorithm based on 

Proposition 2. The basic idea is to first treat the 

optimal retail price for Model oM  as the initial 

price to find the order quantity for each stage, then 

adjust the order quantities using the POT policy, 

and refine the last stage order quantity ( nQS ) by 

solving Model osM  given the multiplicative 

factors. Once nQS  is found, adjust the order 

quantities at the stages according to the POT 

policy. Then, solve Model osM  with given 

,  0,  2,3, ,o tQ QS t n   , to get an updated 

retail price p . The procedure is repeated until the 

multiplicative factors remain unchanged and the 

percentage error of the retail price p  is smaller 

than a given value. 

The algorithm starts with the determination of 

the initial price and order quantities. For this 

purpose, we set the optimal price of Model oM , 

which is the root of Eq. (23), as the initial price. Let 

0
oQ  and 

0
tQS  denote the order quantity submitted 

at stage 1 and stage   , 2, , t t n  . Then, we use 

the following formula to calculate the initial order 

quantities at each stage:   

 

 
1

0 2

1

a bp

a bo p

Ce
Q

h

K

e

 

 


 
 

, 

and 

 

 

0 2
  0,  2,3,

1

a bp

t a bp

t

Ce
QS t n

e

S

e

K
 

 
   

 
 

. 

Next, we adjust order quantities to ensure that 

the order quantity at each stage is a multiple of the 

order quantity at the immediate-following stage, 

where the multiplicative factors 1N  and tN  are 

powers of two. Here, we adopted the POT 

procedure in Subsection 3.1. Set 
0POT

n nQS QS , 

find 1
POT
nQS   so that 1

1 2
xPOT POTn

n nQS QS
  . 

Continue to find 2
2 12

xPOT POTn
n nQS QS
  , ….until 

T
o
POQ = 1

22 POTx
QS , where 1 1 1, ,  ,   nx x x  are non-
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negative integers. Meanwhile, update 

2
1( )

2

POT
oh

D
Q

K
 . 

Once we have the values of ,D p , 1N , and tN , 

in the next step, we can rewrite Model osM as a 

function of 
POT
nQS : 

Maximize, 

2 2
1 1

1

1

2 2

1

2

2t

n

n

n

n

n
os

n n
t

t t

tt

h QS m
Z Dp DK DQS cm

QS m

KS QS
m

QS m

D
e

 

 
    

 

 
  
 

 

 (34)  

where 1 1... , 1,2, , 1t t ntm N tN nN      .  

Similarly, after taking the first derivative of 

osZ with respect to 
POT
nQS  and setting it to 0, we 

have: 

  
1 12

2 21

) 0,
1

( ) (
2

n n
t

t t

t ttn

KSD K
h m m e

m mQS  

      (35) 

and 

2
1

1

*

1 2

2
n t

t
t

n

t t

n

t

KSk
D

m m
QS

h m m e





 
 

 







.          (36) 

Update the initial order quantity at each stage 

given the updated D and repeat the POT procedure 

starting with the refined value of 
*
nQS  from Eq. 

(36). 

Lastly, we need to update the selling price. 

Based on the order quantities obtained from the 

POT procedure, osZ  becomes a function of the 

retail price. Let the first derivative of osZ  with 

respect to p  be zero. Then, we have 

 
2

1
1

0

n
os t

a bp
t t

dZ KSb k
D p c D

s QSd ep  


  
     

   






 (37) 

and 

 
2

1 0.
1

n
t

a bp
t t

KSb k
p c D

s QSe
 



 
     

  
   (38) 

Since , 2,...,t t nQS  , are treated as input 

parameters, we can easily obtain the root of Eq. 

(38), which is the updated selling price. Then, 

repeating the foregoing steps until the 

multiplicative factors remain unchanged and the 

price deviation is within a relative small number, 

we can terminate the algorithm and report the 

corresponding results. The algorithm is 

summarized below. 

Heuristic algorithm 2 

Step 1. Set 0k  , derive the initial selling price 

0p  and 0D  according to Proposition 2. 

Step 2. Calculate 
0    2, ,,  tQS t n   and 

0
oQ . 

Step 3. Determine 2,3, 1,POT
tQS t n    and  

POT
oQ  using the POT procedure. 

Step 4. Calculate and update D . 

Step 5. Update nQS  using Eq. (36). 

Step 6. Repeat step 2 and 3 using D  and nQS  

obtained in steps 4 and 5, respectively. 

Step 7. Solve Eq. (38) for the updated selling price 

kp . 

Step 8. If 0k  , go to step 2. Otherwise, check:  

(1) The multiplicative factors remain 

unchanged for two consecutive iterations.  

(2) 1

1

| |k k

k

p p

p





 . 

If both (1) and (2) hold, terminate the algorithm 

and report the result as kp , 

1,, P
oi

OTQ NJ , 2,3, 1, , ,POT
t tQ nNS t    . 

 Else, let 1k k   and go to step 2.  

 

Without employing any optimization software, 

we can easily and efficiently solve Model osM  

using Heuristic algorithm 2. 

4. Numerical Examples 

We present two numerical examples to demonstrate 

the application and efficiency of the proposed 

heuristic algorithms by comparing the obtained 

approximated solutions with the optimal solutions. 

These examples are conducted using the global 

solver in LINGO 17.0 and Matlab 2015a on a PC 
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with INTEL® Core™ 2 Duo Processor at 2.1 GHz 

and 4.0 gigabytes RAM.  

4.1 Example 1 

Three potential suppliers with capacity and quality 

constraints are available to provide raw materials 

for a company to produce a certain product. The 

minimum quality level for the product is set to 

0.95. Finished products are transported sequentially 

from the manufacturing facility to the local 

warehouse, two regional warehouses, and then the 

DC. The relevant parameters regarding suppliers 

and stages are shown in Tables 1 and 2. The DC’s 

demand rate is price-sensitive and can be 

represented by the following logit function of the 

selling price: 

 

 

6 0.015

6 0.015
5000

1

p

p

e
D

e

  

  
 


. We 

need to select suppliers and determine the optimal 

decisions on pricing, ordering, and inventory at 

every stage of the serial system.  

We start the heuristic by setting an initial price 

for the product, which is obtained from Proposition 

1 in Subsection 3.1. In this example, we start with 

0 $312.9p  /unit. The algorithm terminates after 

two iterations, as there is no further update with 

respect to the number of orders placed to each 

selected supplier as well as the multiplicative 

factors. Table 3 shows the corresponding results at 

each iteration. The algorithm stops with an optimal 

selling price of $335.79/unit. As a result, the 

overall profit of this serial supply chain system is 

$821,815.7/month.  

These results are compared with the optimal 

solution when we solve the model directly using 

the global solver in LINGO 17.0 (see Table 4). 

From Table 4, one observes that the resulting profit 

by implementing the heuristic is only 0.05% less 

than the optimal profit while the CPU time drops 

from one minute to less than 1 second. Therefore, 

the proposed heuristic works efficiently with near 

optimal results.   

Table 1. Parameters for suppliers 

Supplier 

( i ) 
iF  

(units/month) 

iK  

($/order) 
iq  ic  

($/unit) 

1 2,000 3,500 0.92 86 

2 2,500 2,900 0.95 92 

3 2,200 3,300 0.98 103 

 

Table 2. Parameters for stages 

Stage 

( t ) 
th  

($/unit/month) 

te  

($/unit/month) 

tKS  

($/order) 

1 5 5 - 

2 15 10 2,000 

3 28 13 1,300 

4 45 17 900 

5 70 25 800 

 

Table 3. Detailed solution of Heuristic 1 for Model sM  

Stage 

( t ) 

Initial 

Values 
Iteration 1 Iteration 2 

iQ / tQS  

(units/order) 
iJ  1iN / tN  iQ / tQS  

(units/order) 
iJ  1iN / tN  iQ / tQS  

(units/order) 

1 

Supplier 1 2347.02 2 2 2007.24 2 2 2103 

Supplier 2 2136.39 6 2 2007.24 6 2 2103 

Supplier 3 2278.97 2 2 2007.24 2 2 2103 

2 1254.53  1 1003.62  1 1051.5 

3 887.09  2 1003.62  2 1051.5 

4 645.45  1 501.81  1 525.75 

5 501.81  - 501.81  - 525.75 

Retail price ($/unit) 312.9 335.81 335.79 

Revised order 

quantity at last stage 

(units/order) 

501.81 525.75 525.77 
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Table 4. Comparison between Heuristic 1 solution and the optimal solution for Model sM  

Stage 

( t ) 

Heuristic 1 Optimal solution 

1iN / tN  iQ / tQS  

 (units/order) 
1iN / tN  iQ / tQS  

 (units/order) 

1 

Supplier 1 2 2103 2 1986.8 

Supplier 2 2 2103 3 2980.2 

Supplier 3 2 2103 2 1986.8 

2 1 1051.5 1 993.4 

3 2 1051.5 2 993.4 

4 1 525.75 1 496.7 

5 - 525.75 - 496.7 

Retail price ($/unit) 335.79 337.53 

Total profit ($/month) 821,815.7 822,224.4 

Profit Deviation (%) 0.05 - 

 

4.2 Example 2 

Example 1 from [16] considers a five-stage serial 

supply chain system including a manufacturer, 

warehouses and a DC to meet customers’ demand. 

After analysing the historical sales, the company 

concludes that the form of the price-sensitive 

demand function is D  
 

 
1

a bp

a bp

e
p C

e

 

 
 


, 

where 3 04,  C E   4,  0.05a b   . The 

manufacturer requires a minimum quality level of 

95%. Now, we revisit this problem and determine 

the company’s optimal pricing and replenishment 

policy. The relevant parameters for suppliers and 

stages are shown in Tables 5 and 6, respectively. 

Table 5. Parameters for suppliers 

Supplier 

( i ) 
iF   

(units/month) 

iK  

($/order) 
iq  ic  

($/unit) 

1 30,000 5,000 0.94 18 

2 25,000 1,500 0.92 15 

3 36,000 4,500 0.96 24 

4 28,000 3,500 0.98 30 

 

Table 6. Parameters for stages 

Stage 

( t ) 
th  

($/unit/month) 

te  

($/unit/month) 

tKS  

($/order) 

1 5 5 - 

2 20 15 200 

3 50 30 150 

4 95 45 100 

5 145 50 50 

 

According to Proposition 1, we set the initial unit 

selling price of the item 0p  to $64.16. After two 

iterations, the algorithm terminates as we observe 

the unchanged values of the selling price and the 

number of orders from each selected supplier. 

Table 7 shows the detailed results with respect to 

the proposed Heuristic 1 algorithm and the optimal 

solution.  The relative deviations of the retail price 

and the profit are 0.7% and 0.03%, respectively. 

While the optimal decisions suggest selecting only 

suppliers 1 and 4, the heuristic algorithm solutions 

instead choose suppliers 1, 3, and 4. Furthermore, 

none of the selected suppliers completely utilizes 

the capacity in order to meet the minimum quality 

level.   

Next, let us consider Model osM  with supplier 1 

as the only raw material provider and apply 

Heuristic algorithm 2 searching for the solutions. 

By solving Eq. (23) in Matlab 2015a, we obtain 

*
op =$70.68. Then, the order quantities placed at 

each stage are calculated accordingly and shown in 

Table 8.  

Then the initial order quantities in Table 8 are 

adjusted so that the order quantity at each stage is 

an integer multiple of that in the successive stage 

and the integer multiplicative factors must be 

powers of two, as shown in Table 9. 

Once we have the integer multiplicative factors, 

we update D and refine 
k
nQS  according to Eq. (36), 

which becomes 185.12 units. Then, we repeat the 

POT procedure to get the updated order quantities 

at each stage, as shown in Table 10.   



Int. J Sup. Chain. Mgt  Vol. 8, No. 3, June 2019 

752 

Now, using the data in Table 10 as input 

parameters, we solve Eq. (38) for the selling price, 

i.e., $71.17p  /unit. With this retail price, in 

iteration 2, repeat the same process and the results 

in Table 11 are achieved. 

 

Table 7. Comparison between Heuristic 1 solution and the optimal solution for Model sM  

Stage 

( t ) 

Heuristic solution Optimal solution 

iJ  1iN / tN  iQ / tQS  

(units/order) 
iJ  1iN / tN  iQ / tQS  

(units/order) 

1 

Supplier 1 7 8 5702.72 7 9 6223.25 

Supplier 2 0 0 0 0 0 0 

Supplier 3 1 8 5702.72 0 0 0 

Supplier 4 2 8 5702.72 3 7 4840.31 

2  2 712.84  2 691.47 

3  1 356.42  1 345.74 

4  2 356.42  2 345.74 

5  - 178.21  - 172.87 

Retail price ($/unit) 71.86 72.37 

Total profit ($/month) 841,191.71 841,440.6 

Profit Deviation (%) 0.03 - 

CPU time (sec.) 6.01 112.54 

 

Table 8. Initial order quantities for each stage 

Stage  1 2 3 4 5 

Order quantity (units/order) 6071.75 701.11 429.34 286.23 192.01 

 

Table 9. Adjusted POT order quantities for each stage 

Stage 1 2 3 4 5 

Order quantity (units/order) 6144.18 768.02 384.01 384.01 192.01 

Multiplication factor 8 2 1 2 1 

 

Table 10. Adjusted POT order quantities for each stage using refined nQS  

Stage 1 2 3 4 5 

Order quantity(units/order) 5923.84 740.48 370.24 370.24 185.12 

Multiplicative factor 8 2 1 2 1 

 

Table 11. Order quantities for each stage in iteration 2 

Stage 1 2 3 4 5 

Order quantity (units/order) 5895.68 736.96 368.48 368.48 184.24 

Multiplicative factor 8 2 1 2 1 

 

Meanwhile, the selling price remains at 

$71.17p  /unit. Since the multiplicative factors 

and the selling price remain unchanged, the 

algorithm stops. 

Without using any optimization software, osM  

can be solved with the profit error of less than 

0.001% deviation from the optimal profit obtained 

by running the model in Lingo17 (see Table 12). 

This measurement shows the efficiency of 

algorithm 2 for Model osM . 
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Table 12. Comparison between Heuristic 2 solution and the optimal solution for Model osM  

Stage 

( t ) 

Heuristic 2 solution Optimal solution 

tN  tQS  

(units/order) 
tN  tQS  

(units/order) 

1 8 5895.68 9 6255.57 

2 2 736.96 2 695.06 

3 1 368.48 1 347.53 

4 2 368.48 2 347.53 

5 - 184.24 - 173.77 

Retail price ($/unit) 71.17 71.18 

Total profit ($/month) 894,331.1 894,339.8 

Profit Deviation (%) < 0.001 - 

CPU time (sec.) < 1 16.19 

 

5. Implication and analysis 

5.1. Impact of the pricing parameters 

In the logit demand function, there are three basic 

parameters, which are C , a , and b . Parameter 

C  denotes the whole market size the product 

faces, parameter b denotes the steepness of the 

demand function while parameter a  indicates the 

wideness of the demand curve. 

In order to capture the effect of the demand 

function parameters on the optimal decisions, we 

first analyse 10 scenarios by varying parameter b  

while fixing all other parameters. We know that as 

b  increases, the logit demand function becomes 

steeper and closer to the y axis. From Figure 3 (1) 

and (2), it can be observed that both the monthly 

profit and retail price decrease as b  mounts. The 

increasing value of b  indicates a greater demand 

change as price changes. Therefore, it is intuitive to 

decrease the retail price for the purpose of 

improving the sales. Another reasonable 

explanation is that the lower bound on the retail 

price also decreases as b  goes up. 

In addition, the impact of parameter b  on the 

number of selected suppliers and the corresponding 

order quantities from the selected suppliers is 

obvious while there is no influence of b on the 

multiplicative factors for the stages, which always 

stay as 2, 1, and 2 for all the instances. In sum, the 

value of parameter b  has a significant influence on 

the raw material sourcing decisions as well as the 

order quantities at stage 1 while less impact has 

been noticed on the inventory replenishment policy 

at the following stages (see Table 13).  

 

Table 13. Procurement policies with respect to parameter b 

b  

Price ($/unit) 
Profit 

($/month) 
Selected 

suppliers  

Supplier 

multipl. 

factors 

Stage 

multipl.  

factors 

Order quantity 

at last stage 

(units/order) 

Lower 

bound 
Optimal 

0.01 320.79 328.13 6,115,628 1,4 9,7 2,1,2 183.88 

0.02 160.40 168.57 2,783,468 2,4 2,8 2,1,2 160.48 

0.03 106.93 114.92 1,700,605 2,3 4,8 2,1,2 183.55 

0.04 80.20 88.27 1,161,207 1,2,3 12,3,7 2,1,2 177.42 

0.05 64.16 72.37 841,441 1,4 9,7 2,1,2  172.87 

0.06 53.47 61.93 627,770 1,4 9,7 2,1,2 169.39 

0.07 45.83 54.57 477,590 1,4 9,7 2,1,2 165.54 

0.08 40.10 49.13 367,266 1,4 9,7 2,1,2 161.3 

0.09 35.64 44.99 283,673 1,4 9,7 2,1,2 156.61 

0.1 32.08 43.52 180,114 3 8 2,1,2 146.85 
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Figure 3. Effect of the price parameters b and a : 

(1) retail price vs. b , (2) profit vs. b , (3) retail price vs. a , (4) profit vs. a  

Next, let us study the effect of parameter a  on 

the optimal decisions for the serial supply chain 

system. We consider 10 scenarios by increasing a  

by 0.5 at a time while fixing all other parameters. 

Figure 3 (3) and (4) show the effect of a  on the 

selling price and monthly profit. As a  goes up, 

both the selling price and monthly profit show an 

increasing trend. However, compared to b , both 

the selling price and monthly profit are less 

sensitive to a . Meanwhile, variation of a  leads 

to distinct purchasing and inventory replenishment 

policies at each stage, however, the multiplicative 

factors from stage 2 to the last stage do not vary as 

we keep increasing parameter a  (Table 14). 

 

Table 14. Procurement policies with respect to parameter a  

a  

Price ($/unit) 
Profit 

($/month) 
Supplier 

selection 

Supplier 

multipl. 

factors 

Stage 

multipl. 

factors 

Order Quantity 

at last stage  

(units/order) 
Lower 

Bound 
Optimal 

 3 51.14 61.84 513,785 1,2,3 12,6,6 2,1,2 159.71 

 3.5 57.45 66.73 670,989 1,4 9,7 2,1,2 164.91 

 4 64.16 72.37 841,441 1,4 9,7 2,1,2 172.87 

 4.5 71.20 78.52 1,026,716 1,4 9,7 2,1,2 179.36 

 5 78.53 85.18 1,219,217 1,2,3 11,2,8 2,1,2 184.96 

 5.5 86.09 92.03 1,433,015 1,4 9,7 2,1,2 189.05 

 6 93.87 99.27 1,650,148 1,3,4 9,9,6 2,1,2 192.75 

 6.5 101.82 106.76 1,875,532 1,4 9,7 2,1,2 195.72 

 7 109.93 114.48 2,107,129 1,4 9,7 2,1,2 198.29 

 7.5 118.18 122.51 2,330,181 2,3 4,8 2,1,2 205.83 
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It is noticeable that multiple suppliers are not 

fully utilized in some instances, which has been 

proved in [15]. Thus, [25]’s claim that there exists 

an optimal solution where at most one of the 

selected suppliers does not fully utilize its capacity 

for the optimization problem with multiple 

capacitated suppliers and constant demand does not 

apply to our problem. In our case, considering the 

quality constraint and price-sensitive demand, it is 

possible to select multiple suppliers without fully 

utilizing their capacities. 

5.2 Impact of the number of preferred suppliers 

To study the effect of the number of suppliers on 

the raw material procurement decisions, we next 

perform sensitivity analysis with respect to the 

number of the preferred suppliers in the supplier 

pool, that is to say, by varying the number of 

candidates available.  

Now, we consider an even larger pool of 

suppliers, based on the data provided in [26], [27], 

with 20 possible vendors. Since we are using new 

data with a large pool of suppliers, we intend on 

ranking the suppliers and then proceed with solving 

the supplier selection problem considering a 

different number of preselected suppliers. We have 

not selected AHP for ranking as suggested in [27], 

because we do not have an experienced decision 

maker; instead, we use three alternative ranking 

mechanisms that have been widely recommended 

in the multi-criteria literature [28]. These are 

metrics 1L  and L , and the Borda count method. 

Below we briefly describe each of them as detailed 

in [28]: 

Lp 

This metric is a measure of the distance between 

two vectors x and y and is given by the equation 

below: 

 

1

1

n pp

p j j

j

x y x y


 
   

  
 . 

We consider two cases for the value of p as two 

separated ranking methods to rank the suppliers. 

These two cases are 1  p and p  . In the 

second case, when p tends to infinity, the value of 

the distance is calculated as shown below: 

         
1, ,

max j j
j n

L x y
 

  . 

Borda count 

This method considers n criteria to rank different 

alternatives. The first step is to rank the criteria 

from 1 to n, being 1 the least important and n the 

most important. Next, for each criterion, its 

corresponding weight is calculated as follows: 

Criterion ranked 1
n

s
 , 

Criterion 
 1

2
n

s


 , … , 

Last criterion 
1

s
  , where 

 1

2

n n
s


 . 

Then each alternative is evaluated by summing 

each criterion multiplied by its corresponding 

weight value. The higher the sum, the higher the 

ranking for that alternative.  

Table 15. Ranking of suppliers according to 

each method  

Supplier  1L  L  Borda 

1 15 20 6 

2 2 7 5 

3 9 2 13 

4 13 12 15 

5 1 3 4 

6 8 18 2 

7 5 13 11 

8 6 14 10 

9 18 19 16 

10 19 15 19 

11 10 16 7 

12 14 8 17 

13 11 4 12 

14 16 10 3 

15 7 5 14 

16 20 17 20 

17 17 11 18 

18 12 6 1 

19 3 9 9 

20 4 1 8 

 

The criteria used for each ranking method are: 

setup cost, capacity, unit price, quality level and 

service level. The last one is described as the 

percentage of the units that are expected to be 

received at the desired lead time. The only criterion 

not used in the actual mathematical model is the 
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service metric, but we assume it is related to the 

setup cost of the supplier. Tables 16 and 17 in the 

Appendix show the data utilized in this example 

and the scaled data used for the ranking methods, 

respectively. To use Borda count, we consider the 

following order for the selection criteria: unit price, 

quality level, setup cost, service level, and capacity. 

After using the methods described above, the 

resulting ranking is shown above in Table 15. 

Figure 4 shows how the profit changes when a 

different pool of suppliers is considered. We would 

expect the profit to increase until a certain set of 

suppliers becomes available. Indeed, in the three 

cases, the maximum profit achievable is 

$2,950,253 with a price of $166.53/unit and a 

demand of 19,834 units/month. The curve 

described by the changes in profit follows a step 

function-type shape, where the total profit 

increases, and remains the same until a supplier 

with potential to increase the objective function 

comes in, which is in line with the intuition behind 

this experiment. Clearly, Borda count achieves this 

maximum profit earlier than the other two methods. 

The latter can be explained given that this method 

assigns a relative importance to each criterion, and 

within this pre-emptive approach the cost 

parameters were the criteria with the higher rank. 

As these cost parameters are the ones included in 

Model sM , we would expect that a set of suppliers 

ranked using Borda count generates a more cost-

conscious pool of vendors.  

 

 

 
Figure 4. Impact of the number of preferred suppliers: (a) total profit with suppliers ranked with 1L ; 

(b) total profit with suppliers ranked using Borda count; (c) total profit with suppliers ranked using L   
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6. Conclusions and Future Research 

In this paper, we investigate an integrated supplier 

selection, inventory replenishment, and pricing 

problem for a serial supply chain facing price-

sensitive demand, which can be represented by a 

logit demand function. Two MINLP models and 

the corresponding solution algorithms are discussed 

and developed in this research. First, an MINLP 

formulation is developed to determine the strategic 

decisions in the selection of suppliers, order 

frequency and order quantity from each selected 

vendor, inventory lot sizes between consecutive 

stages, and the selling price. Then, a heuristic 

algorithm is proposed to obtain a near optimal 

solution in a timely manner. Second, we develop an 

MINLP formulation and propose a heuristic 

algorithm when considering a single uncapacitated 

supplier in a serial supply chain. These two 

algorithms are then implemented, and their 

performance is illustrated by solving two examples. 

Furthermore, we conduct a computational analysis 

with respect to the pricing parameters in the logit 

demand function and show their significant 

influence on the decisions of supplier selection, 

order allocation, and retail price. Lastly, after 

ranking the candidate suppliers with various 

ranking methods, we analyse the impact of the 

number of suppliers in the supplier pool on the 

final selection of suppliers and the corresponding 

profit per time unit. It is concluded that, for the 

different ranking methods, the optimal number of 

suppliers that leads to the maximum profit per time 

unit varies.  

 Considering that the current research is for a 

single product, it is natural to extend the proposed 

models to multiple products with various price-

sensitive demand functions.  Meanwhile, as stated 

previously, the proposed algorithms can be 

generalized to obtain near optimal solutions on 

pricing, lot sizing, supplier selection, and inventory 

replenishment when the retailer faces other demand 

functions, such as the linear function or exponential 

function. Therefore, it would be interesting to 

implement these algorithms with various demand 

functions and compare the corresponding 

performance efficiency. In addition, it could be 

important to include supply contracts and supplier 

quantity discount offers into our proposed models. 

 

Appendix 

Table 16. Data for 20 suppliers  

Supplier ( i ) iF  (units/month) iK  ($/order) iq  ic  ($/unit) Service 

1 11000 5000 0.94 15 0.98 

2 23300 3000 0.92 18 0.9 

3 30200 4500 0.96 24 0.98 

4 25700 3500 0.98 30 0.95 

5 24800 3000 0.92 18 0.92 

6 12800 3200 0.9 15 0.9 

7 39700 6000 0.96 20 0.9 

8 27100 3000 0.97 30 0.95 

9 11400 3400 0.98 28 0.96 

10 19200 5400 0.98 26 0.91 

11 18900 4000 0.95 17 0.92 

12 30900 4200 0.95 28 0.95 

13 31100 4900 0.98 22 0.91 

14 20800 2300 0.97 23 0.95 

15 35800 4700 0.97 25 0.97 

16 14900 5700 0.93 26 0.96 

17 20200 4100 0.97 28 0.99 

18 23500 3700 0.90 12 0.91 

19 29600 3000 0.97 28 0.95 

20 31400 4500 0.91 19 0.97 
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Table 17. Scaled data for 20 suppliers 

Supplier ( i ) iF  (units/month) iK  ($/order) iq  ic  ($/unit) Service 

1 0.28 0.60 0.96 1.00 1.00 

2 0.59 1.00 0.94 0.83 0.92 

3 0.76 0.67 0.98 0.63 1.00 

4 0.65 0.86 1.00 0.50 0.97 

5 0.62 1.00 0.94 0.83 0.94 

6 0.32 0.94 0.92 1.00 0.92 

7 1.00 0.50 0.98 0.75 0.92 

8 0.68 1.00 0.99 0.50 0.97 

9 0.29 0.88 1.00 0.54 0.98 

10 0.48 0.56 1.00 0.58 0.93 

11 0.48 0.75 0.97 0.88 0.94 

12 0.78 0.71 0.97 0.54 0.97 

13 0.78 0.61 1.00 0.68 0.93 

14 0.52 1.30 0.99 0.65 0.97 

15 0.90 0.64 0.99 0.60 0.99 

16 0.38 0.53 0.95 0.58 0.98 

17 0.51 0.73 0.99 0.54 1.01 

18 0.59 0.81 0.92 1.25 0.93 

19 0.75 1.00 0.99 0.54 0.97 

20 0.79 0.67 0.93 0.79 0.99 
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