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Abstract— To relate the control limits of Shewhart-

type chart to the p-value, the control charting 

techniques were constructed based on statistical 

inference scheme. However, in daily practice of 

complex process variability (CPV) monitoring 

operation, these limits have nothing to do with the p-

value. We cannot put any number to p. Instead, p is 

just read as “most probably”. These words mean that 

in practice we are finally working under data analysis 

scheme instead. For this reason, in this paper we 

introduce the application of STATIS in CPV 

monitoring operation. It is a data analysis method to 

label the sample(s) where anomalous covariance 

structure occurs. This method is algebraic in nature 

and dominated by principal component analysis (PCA) 

principles. The relative position of a covariance matrix 

among others is visually presented along the first two 

eigenvalues of the so-called “scalar product matrix 

among covariance matrices”. Its strength will be 

illustrated by using a real industrial example and the 

results, compared with those given by the current 

methods, are very promising. Additionally, root causes 

analysis is also provided. However, since STATIS is a 

PCA-like, it does not provide any control chart, i.e., the 

history of process performance. It is to label the 

anomalous sample(s). To the knowledge of the authors, 

the application of STATIS in complex statistical 

process control is an unprecedented. Thus, it will 

enrich the literature of this field. 

Keywords— conjoint analysis, Escoufier’s operator, 

generalized variance, Hilbert-Schmidt space, vector 

variance.  

1. Introduction 

The word “complex” in CPV refers to several 

interrelated critical to qualities (CTQs). It is 

customarily replaced by the word “multivariate” 

when the interrelationship among CTQs is 

quantified in terms of Pearson correlation. It 

represents the mathematical and statistical 

complexity faced in monitoring CPV and generally 

in complex statistical process control (CSPC). As 

mentioned in [19] and repeated in [20], [21], 

monitoring CPV is as important as monitoring 

process target. 

Although it is an important part in CSPC, we learn 

that the technique for monitoring CPV is still in 

development. This is perhaps due to the fact that (1) 

it requires large sample size, and (2) CPV is difficult 

to measure. And among the very limited number of 

CPV measures available, according to [25], 

generalized variance (say GV for brevity) is the most 

adopted measure. We can find its importance as a 

CPV measure in, among others, [1], [12], [18], [23], 

[27], [28], [29], and [30].  

However, as mentioned in [5], it is unfortunate that 

GV converges in distribution very slow to normality. 

It is then not favorable to be used in manufacturing 

industrial practice where only small sample is 

available. And when dealing with small sample, in 

the current practice, the control limits do not reflect 

the p-value. In other words, they have nothing to do 

with probability of false alarm (PFA). As a 

consequence, p cannot be represented by any 

number or percentage and in practice we are happy 
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to read p as “most probably”. See [20]-[21] for the 

details. 

To have a better method for CPV monitoring, [7] 

introduced a technique constructed based on vector 

variance (VV). The notion of VV is originally 

appeared in [8] and introduced as CPV measure by 

[4]. The purpose of VV-based method is to reduce 

the weakness of GV-based method. See also [18] 

and [26] for a discussion of these methods. Since VV 

converges in distribution faster than GV to 

normality, see [6], this method needs less sample 

size. In addition, VV-based method is more sensitive 

to the small shift in covariance structure. However, 

see [5], it is still not favorable in manufacturing 

industrial practice because, for small sample, the 

control limits have still nothing to do with the p-

value; they do not reflect PFA.   

These two methods are constructed based on the 

theory of statistical inference in order to have direct 

relationship between the control limits and the p-

value. But finally, p must be interpreted as “most 

probably”. This means that, in practice, these 

methods are not an inferential method but a data 

analysis or also called data exploration method. This 

is the point that motivates us to write this paper. 

This point of view leads us to introduce here the 

application of what French statisticians called 

STATIS in CSPC to enrich data exploration results. 

STATIS stands for “Structuration des Tableaux à 

Trois Indices de la Statistique”. It was first 

introduced in a thesis by [16] in order to do conjoint 

analysis of three-way data matrix. Since then, its 

development and application in many areas can be 

found in, for example, [10], [15] and [17]. This 

method is algebraic in nature and constructed based 

on PCA principles. For those who are interested, the 

suggested reading in French is [9], and [13], and in 

English is [11] and [15]. 

We show that, through graphical representation, 

STATIS could label the sample(s) where anomalous 

covariance structure is present. In addition, it could 

lead to identify the root causes why at a given 

sample the covariance structure has been shifted. 

This facility cannot be provided by the two 

Shewhart-type methods mentioned above. To 

illustrate its strength, a real industrial example will 

be presented, and the results will be compared with 

those given by GV-based and VV-based methods.  

In the rest of the paper our discussion will be 

organized as follows. We start in the next section by 

recalling GV-based control chart (GV-chart for 

brevity); its theoretical background and practical 

implementation will be highlighted. Later on, in 

Section 3 we show the performance of convergence 

in distribution of GV and that of VV to normality. 

Due to slow convergence, in Section 4 we adopt the 

method of STATIS in CPV monitoring. Here, our 

focus is on its implementation without going into the 

details of theoretical background. In Section 5 a real 

example coming from the Centre for Indonesian 

Army Industry, Ltd., will be presented and 

discussed. Finally, closing remarks in the last 

section will end this work. 

2. The Most Adopted Shewhart-

Type Chart 

Monitoring operation of CPV is basically conducted 

based on m independent samples of the same size n. 

Statistically speaking, it is equivalent to testing 

repeatedly the following 00 : iH  for all 

mi ,,2,1  , versus 01 : iH  for an i  in the set 

 m,,2,1  . Here, i is the covariance matrix of the 

population where the i -th sample is drawn and 0  

is the hypothetical covariance matrix. The p -value, 

also called PFA, is set to be 0.0027 or 0.27% while 

the two sided critical values represent the lower 

control limit (LCL) and upper control limits (UCL).   

If iS  is the i -th sample covariance matrix, under 

00 : iH  for all mi ,,2,1  , [2], see also [22], 

shows that,       
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That is the reason why (2.1) is not used in the 

literature to construct the GV-chart. Instead, as can 

be seen in the next sub-section, (2.2) is used  

   2

001

2

,0
1

 NbS
b

d
i  (2.2) 

In addition, the convergence in (2.1) is slower than 

that in (2.2) 

2.1 GV-chart 

Suppose m  independent samples each of size n  

drawn from a p -variate normal distribution with 

positive definite covariance matrix   are available 

for CPV monitoring operation. We consider again 

iS  the covariance matrix of the i -th sample; 

mi ,,2,1  . GV-chart is constructed by plotting on 

the same diagram the sample GV, iS ; mi ,,2,1 

, and the control limits. In this paragraph, an 

evolution of GV-chart will be presented to clarify its 

usefulness.  

First of all, no literature brings (2.1) into practice in 

CPV monitoring because the parameters mean, and 

variance are not the true ones. Instead, literature uses 

(2.2). In this case, see [20]-[21], the control limits 
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Here, S  is the average of iS . It is worth noting that, 

in practice, these control limits are used regardless 

whether the sample size n is large or small. 

Of course, these control limits are better than those 

(if available) given by (2.1) since, as mentioned 

above, the convergence of (2.1) is slower than that 

of (2.2). However, see [3], they are not unbiased. 

This author shows that when we deal with m 

independent samples, under 0H  we have 
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Accordingly, (2.3) provides these unbiased control 

limits 
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the latest form of GV-chart evolution.  

That is the scenario at a glance of GV-chart 

evolution. It is worth noting that whichever the 

control limits we use, if n is sufficiently large, the p-

value is 0.27%. Meanwhile, for small n, p must be 

read as “most probably” and does not represent the 

PFA.  

We conclude that no matter whether the sample size 

is large or small, the control chart is always the 

same. The only difference lies in the way we 

interpret the chart. When n is sufficiently large, the 

chart shows graphically how to make decision in 

testing the hypothesis 0H  versus 1H . On the other 

hand, when n is small, this chart has nothing to do 

with hypothesis testing; it must be considered as a 

data analysis or data exploration tool. 

2.2 VV-chart 

Under 0H , [6] show that for each sample i ,  
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Here, Tr  is the trace operator on a square matrix, 

i.e., the sum of all diagonal elements. The VV-chart 

is then constructed by plotting on the same diagram 

the value of  2
iSTr  and that of control limits. [6] 

show that (2.4) leads to 
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regardless the sample size n . Interestingly, they are 

unbiased.  

Like GV-chart, when n is sufficiently large, VV-

chart is another graphical representation on how to 

make decision in testing the hypothesis 0H  versus 
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1H  with p-value 0.27%. And, when n is small, it is 

a data analysis tool and cannot be used to do 

hypothesis testing. 

3. Convergence Performance 

To illustrate the convergence performance of GV 

and that of VV, simulation experiments were 

conducted for selected value of n  and p  (number 

of CTQs). In what follows we report the results for 

3p  and 5n , 20 and 100 (representing small, 

moderate and large sample size). In Figure 1 and 

Figure 2 the histogram of GV and that of VV issued 

from 100,000 averages of simulated data are 

presented, respectively. Figure 1(a) is for 5n  

while Figures 1(b) and 1(c) are for 20n  and 100.  

This figure illustrates that, for 5n , the empirical 

distribution of GV is strongly skewed to the right 

and far from normality. According to Anderson-

Darling’s test, see [24], 56.14561AD  and p -

value < 0.005. It is also so for moderate 20n  (

491.2508AD  and p -value < 0.005). Even for 

large 100n , see Figure 1(c), the distribution is 

still far from being normal ( 787.498AD  and p -

value < 0.005). 

Figure 2(a) is the histogram of VV for 5n  while 

Figures 2(b) and 2(c) are for 20n  and 100n . 

Here also, similar situation revealed. For large value 

of n = 100, the histogram is seemingly close to 

normality. However, AD = 485.514 and p-value < 

0.005 indicate that it is still far from normality but 

better than GV which has AD = 498.787.  

A more general result showing that GV and VV 

converge very slowly to normality is given in [7]. 

This strengthens our claim that in practice both GV-

chart and VV-chart must be considered as data 

analysis tools and not related to hypothesis testing 

0H  versus 1H . This motivates us to introduce in the 

next section the application of a data analysis 

method called STATIS to enrich data exploration 

results. 
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Figure 1. Histogram of GV for 3p  and 5n  (a), 20 (b) and 100 (c) 
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Figure 2. Histogram of VV for 3p  and 5n  (a), 20 (b) and 100 (c) 
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4. How STATIS Works in CPV 

Monitoring 

This method was first introduced in [16] and 

developed based on the notion of Escoufier’s 

operator related to a data matrix. Basically, see [8], 

the set of all such operators completed with scalar 

product defined by Trace is a Hilbert-Schmidt space; 

the sum of all eigenvalues of each operator is finite. 

This allows us to transform the study of a sequence 

of m independent sample covariance matrices into 

that of m independent operators. And its 

computation is made practical since the scalar 

product of two operators is equal to the trace of the 

multiplication of related covariance matrices. Under 

this model, CPV monitoring operation can be 

considered as labeling process of anomalous 

covariance matrix. This is what STATIS is for.  

Consider again the sequence of m covariance 

matrices iS ; mi ,,2,1  . Let us write C a matrix 

of size  mm  where its general element is defined 

by  jiij SSTrc  . The diagonalization of C gives us 

a vector representation of the matrices iS  on the first 

two principal components. It is based on this 

representation that we analyze the relative position 

of these matrices. An example in the next section 

will clarify how it works. 

5. Industrial Example 

We discuss the industrial example presented in [3]. 

The data are collected during flange manufacturing 

process at Centre of Indonesian Army Industry 

located in Bandung, Indonesia. The number of 

CTQs is p = 3 and the sample size is n = 5. 

5.1 Result Issued from GV-Chart and 

VV-Chart 

Figure 3 presents (a) GV-chart and (b) VV-chart 

without UCL. Since n is very small, there is no 

significant role of UCL in making the decision. 

From this figure we conclude that, according to both 

charts, most probably the sample 16 is the strongest 

suspect. Furthermore, GV-chart shows that sample 6 

is potential to be suspect while VV-chart indicates 

that sample 3 is also another potential suspect. Now, 

let us see what STATIS can do for us.  

5.2 Evidence from STATIS 

On the other hand, the results from STATIS are 

shown in Figures 4 and 5. 

These figures strongly indicate that at samples 3, 6, 

and 16 the covariance structure has been shifted. The 

shift can be more clearly seen in Figures 4-5 than in 

Figure 3. 

Further analysis shows in Figure 6(a) the run chart 

of the variance of the first variable (blue), second 

(orange) and third (grey). Meanwhile, Figure in 6(b) 

is the run chart of the covariance of the first and the 

second variables in blue, that of the first and the third 

in orange, and that of the second and the third in 

grey. 

 
(a) 

 
(b) 

Figure 3. GV-chart (a) and VV-chart (b) 
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From Figure 6 we see that,  

1. At sample 16, covariance structure has been 

changed due to the change of the variance of 

the first variable, the covariance of the first 

and the second variables, and the covariance 

of the first and the third variables. 

2. At sample 6, covariance structure has been 

changed due to the change of the variance of 

the third variable, and that of the covariance 

of the first and the third variables. 

3. At sample 3, covariance structure has been 

changed due to the change of the variance of 

the first variable.   

To close this section, it is worthwhile to note that, as 

can be seen in Figure 7, the change of covariance 

structure is not due to the change of correlations.

 
(a) 

 
(b) 

FIGURE 4. Run chart along (a) the first and (b) the second principal components 

 
 

FIGURE 5. Representation of iS  along the first two principal components  
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(b) 

FIGURE 6. Run chart of the three variances (a) and the three covariances (b) 
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FIGURE 7. Run chart of the three correlations 

6. Closing Remarks 

We show that, in practice, Shewhart-type charts for 

CPV monitoring such as GV-chart and VV-chart 

have nothing to do with testing hypothesis. The 

control limits have nothing to do with p-value and 

we cannot put any number to p. Accordingly, these 

charts which originally constructed for statistical 

inference purpose finally become data analysis tool 

and not related to inferential analysis. 

In data analysis scheme, to enrich the results of data 

exploration, the application of STATIS has been 

introduced and the results are very promising. An 

industrial example has successfully illustrated the 

power of STATIS. 
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