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Abstract— The paper discusses the concept and 
problem of identifying DDoS attacks for information 
management. The main starting mechanisms and 
types of DDoS attacks are analyzed. To identify them, 
signature and behavioral methods of analyzing 
network traffic are used. Analysis of the advantages 
and disadvantages of these methods actualized the 
need for their combined use. To detect and classify 
DDoS attacks, the need to develop and use a neural 
network model has been updated. The training and 
testing of the model were made on the initial data 
from the NSL-KDD set. All lines in this set are 
represented as sequences of TCP packets, UDP 
packets, and ICMP packets of network traffic 
transmitted from the source of the attack to the 
attacked network node. The total sample size was 
8067 lines. Of these, half of the data corresponded to 
DDoS attacks, and the rest of the data characterized 
clear connections. The Deductor modelling 
environment was used to build the neural network 
model. The constructed neural network model was a 
single-layer perceptron with 11 input neurons, 23 
hidden neurons and 1 output neuron. The accuracy of 
the constructed model was calculated based on 
contingency tables. The accuracy of the initial data 
classification at the training stage was 97.94%. The 
classification accuracy at the testing stage was 
97.87%. To assess the quality of the neural network 
model, the errors of the first (0.93%) and second 
(3.3%) type are calculated. Testing the model showed 
good results since almost all DDoS attacks were 
successfully classified. Thus, the neural network 
model for detecting DDoS attacks has successfully 
solved the task of identifying and classifying malicious 
network connections. 
Keywords— DDoS attack, information security, neural 
network, classification, information management.  

1. Introduction 

As a rule, three basic properties of information [1] 
can be distinguished from the point of view of 
information security: confidentiality of information 
resources and access objects, their integrity and 
availability. The availability property is primarily 
related to the availability of information resources 

and the readiness of various services to service a 
user and program requests [2]. Today, information 
security incidents are increasingly occurring in 
various information systems related to attempts to 
disrupt the availability of information resources and 
information stored there [3]. Attacks aimed at the 
occurrence of these incidents relate to a type of 
“denial of service” attacks - DoS attacks [4]. If the 
attack is distributed, then it is called a DDoS attack 
[5]. 
Such attacks on information resources are the most 
frequent since they are relatively easy to organize 
using all sorts of malicious tools [6 -10]. Attackers 
implement DDoS attacks and, as a rule, for the 
purpose of additional earnings, as well as the 
ability to inflict material and reputational damage 
to a competing company. Therefore, among the 
objects of DDoS-attacks are often various banks 
and online stores, for which the loss of reputation is 
more important than material damage [11, 12]. 

2. Methods 

As is well known, a DDoS attack is a distributed 
attack to an information system [7]. At the same 
time, network traffic, which characterizes DDoS 
attacks, is generated by several sources and, as a 
rule, has a single governing body. Attackers 
implementing this type of attack often use an 
attacking system that has cluster architecture. Such 
a system necessarily has a control mechanism that 
can be a computer that synchronizes the system as 
a whole. In addition, there is a number of main 
computers, as well as zombie computers, jointly 
generating and sending a series of requests to the 
attacked system. In practice, DDoS attacks are 
often implemented by preliminary collusion of a 
group of users which, at a certain point in time, all 
together begin to attack a selected computer or 
some service in an organization’s information 
system. With a large number of users, the 
probability of successful implementation of such an 
attack is high [8-12]. 
Modern means of detecting DDoS attacks use both 
signature and behavioral methods for analyzing 
data transmitted over the network [9,10]. 
Individually, these methods have both advantages 
and disadvantages. Therefore, the creation of 
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hybrid methods for detecting DDoS attacks [11, 13-
16] based on the use of both approaches is 
currently topical. 
In this paper, a neural network model of the type of 
a single-layer perceptron was proposed as an 
effective hybrid method for solving the problem set 
[12,17-20]. For training and testing of the model, 
the NSL-KDD dataset [13, 21] from a publicly 
available source was used. This set is often used by 
developers and researchers for a comparative 
evaluation of the effectiveness of various 
intellectual analysis algorithms: neural networks 
[22-38], fuzzy neural networks [17], decision trees 
[18, 19], cluster analysis algorithms [20], etc. All 
entries in this set are time series [21, 22, 39] and 
consist of sequences of TCP packets, UDP packets, 
and ICMP packets of network traffic transmitted 
from the source of the attack to the attacked 
network node [40]. 
In the NSL-KDD data set, there are 41 parameters 
by which DDoS attacks are recognized. In addition, 
this kit describes 6 different types of DDoS attacks: 
Back, Land, Neptune, Ping-of-death, Smurf and 
Teardrop. The initial data were prepared for 
analysis by eliminating duplicates and 
inconsistencies from them, deleting records that are 
not relevant to the types of DDoS attacks under 
consideration, and also evaluating and selecting a 
system of informative input characteristics from the 
point of view of their influence on the output result 
[23]. In addition, during the formation of the 
training and test samples, the obtained data were 
normalized by the formula [24]:  

minmax

min

XX
XXN





,   
  (1) 
Where X is the original value of the feature, 

maxX - the maximum value of the feature, 

minX - the minimum value of the feature, N - the 
normalized value of the feature. 
After preprocessing of the initial data, a sample 
ready for analysis was obtained, comprising 8068 
lines, half of which characterized DDoS attacks, 
and the remaining data were clear compounds that 
did not characterize any attacks. The neural 
network model was built (trained and tested) on the 
data obtained [25]. 
The analytical platform Deductor was chosen as a 
tool for building the neural network model. This 
software product allows a client to download data 
for analysis, evaluate their quality, initialize, train 
and test neural network models of various 
architectures, as well as perform visualization of 
the results obtained at each stage of model 
construction. 
Before to train a neural network, we need to 
determine its structure, select the appropriate 

neuron activation function, and also choose the 
algorithm used to configure the neuron weights. 
The structure of any neural network model is 
partially determined by the data of their training 
sample. Thus, the number of input parameters in 
the sample corresponds to the number of input 
neurons in the model, and the number of output 
parameters corresponds to the number of neurons 
in the output layer. In our case, the training sample 
consisted of 11 input parameters and 1 output 
parameter. Accordingly, the input layer of the 
neural network model contained eleven neurons, 
and the output layer consisted of a single neuron. 
In this paper, a single-layer direct propagation 
neural network was developed to detect DDoS 
attacks, which is a single-layer perceptron. This 
network includes one layer of hidden neurons. To 
determine the optimal number of neurons in this 
layer, we use the conclusion from the Arnold – 
Kolmogorov – Hecht-Nielsen theorem [26]: 

1*2  inh NN ,   
  (2) 
Where N in is the number of neurons in the input 
layer, and N h is the number of neurons in the 
hidden layer. 
Consequently, the total number of neurons 
contained in the hidden layer of a single-layer 
perceptron should be no more than 23. This follows 
from formula (2) taking into account the fact that 
the number of neurons in the input layer in a given 
neural network is 11. In the future, the number of 
neurons in the hidden layer can be reduced if, when 
training and testing the neural network model, this 
reduction will increase its accuracy. 
To calculate the output values of each neuron in the 
hidden layer, the logistic activation function, 
sigmoid, is chosen; its analytical form is set by the 
following expression [27]: 

  
xe

xf 


1
1)(

, 
    (3) 
Where a is the steepness of sigmoid. 
To train the neural network model, the classical 
back-propagation error algorithm was chosen [28]. 
In this algorithm, the input signals propagating 
from the input to the output of the neural network, 
as a rule, give the root-mean-square output error of 
a certain magnitude. To reduce this error, a phase 
of the reverse propagation of the signal is 
performed, at which the weights are adjusted. 

3. Results and Discussion 

In order to assess the accuracy of the trained neural 
network, an adjacency matrix was constructed, 
which is presented in Table 1. 
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Table 1. Results of the trained neural network 
accuracy evaluation 

  The result of neural network 
classification 

Actual data False True Total 
False 3855 145 4,000 
True 21 4046 4067 
Total 3876 4191 8067 

  
According to the data from the presented table, the 
accuracy of the neural network model was 
calculated at the stage of its training, the accuracy 
was 97.94%. 
To assess the generalizing ability of the trained 
neural network, a test data sample was used; it 
contains 1500 lines, half of which characterize 
DDoS attacks, and the remaining data is clear 
connections. Table 2 presents the results of the 
neural network model testing. 
 
Table 2. The classification results for the data from 

the test sample 

  The result of neural network 
classification 

Actual data False True Total 
False 725 25 750 
True 7 743 750 
Total 732 768 1500 

  
According to the data from the table, the accuracy 
of the neural network model was calculated at the 
testing stage; the accuracy was 97.87%. 
For the purpose of a more detailed assessment of 
the trained neural network accuracy, errors of type 
I and type II were obtained using test data. In this 
case, the type I error is considered to be network 
connections related to DDoS attacks but classified 
by the neural network as clear connections. 
Accordingly, a type II error is considered to be 
network connections that are not related to DDoS 
attacks but classified by a neural network as DDoS 
attacks.  
The formula for calculating a type I error is as 
follows: 

%100*
1

1
1 N

nE 
,   

   (4) 
Where n 1 is the number of records in the test 
sample of data related to DDoS attacks but 
classified by the neural network as clear records; 
N 1 is the total number of rows in a test sample of 
data related to DDoS attacks. 
The formula for calculating a type II error is as 
follows: 

%100*
2

2
2 N

nE 
,    

  (5) 
where n 2 is the number of records in the test 
sample of data not related to DDoS attacks but 
classified by a neural network as a DDoS attack;  
N 2 is the total number of clear network connections 
in the test data sample. 
The numerical value of the type I error is calculated 
as: 

%93,0%100*
750
7%100*

1

1
1 

N
nE

; 
The value of the type II error: 

%3,3%100*
750
25%100*

2

2
2 

N
nE

. 
Errors of the first and second types turned out to be 
insignificant, which indicates the high efficiency of 
the constructed neural network model in solving 
the problem of detecting DDoS attacks. 

4. Summary 

According to the results of the research, it can be 
concluded that, despite the difficulty of identifying 
DDoS attacks, neural networks do a good job with 
this task. In all the experiments carried out related 
to the training and testing of the constructed neural 
network model, as well as with the calculation of 
the error values of the first and second type, the 
neural network showed high accuracy. 
Consequently, the neural network model is 
adequate and allows effectively to solve the 
problem of identifying and classifying DDoS 
attacks in computer systems and networks. 

5. Conclusions 

Thus, we can conclude that the neural network 
described in this paper is an effective tool for 
solving the problems posed and is suitable for use 
in decision support systems for detecting DDoS 
attacks. In the future, with the aim of developing a 
solution to this problem, it is planned to develop 
and test other methods and data analysis algorithms 
[29-36], as well as assess and compare the 
effectiveness of various approaches to identifying, 
classifying DDoS attacks and resisting them. 
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