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Abstract— The established modified group chain 
acceptance sampling plans (MGChSP) only considered 
the consumer’s risk when developing the plans and 
turned down the producer’s risk, which means the 
established MGChSP satisfied the consumer but not 
the producer. Based on the above problem, this article 
proposes the minimum angle method for the MGChSP 
as the method considers both risks (consumer’s and 
producer’s) simultaneously. In order to develop the 
proposed MGChSP, the generalized exponential 
distribution is chosen as its lifetime distribution, and 
the time truncated simulation is done. The simulation 
produces the optimal number of groups, ࢍ at different 
values of specified design parameters. It turns out that 
the ࢍ satisfies both parties, consumer and producer, 
while the number of groups for the established 
MGChSP only satisfied the consumer. For application 
purpose, failure time (in hours) for computer software 
is used in order to demonstrate the usage of MGChSP 
in the industry. 
 
Keywords— Modified group chain acceptance sampling 
plans (MGChSP), Minimum angle method, Generalized 
exponential distribution, Consumer’s risk, Producer’s 
risk.   

1. Introduction 

Modified group chain acceptance sampling plans 
(MGChSP) was initiated by Mughal [1] in order to 
impose tighter acceptance criteria on the previous 
established sampling plan, namely group chain 
acceptance sampling plan (GChSP). Acceptance 
criteria is the conditions imposed on the sampling 
plans in order to decide whether to accept or to reject 
a lot. The tighter acceptance criteria in the MGChSP 
will put the pressure on the producer to manufacture 
higher quality products. If the producer does not 

produce higher quality products, then the product 
will not be accepted and eventually, the product 
cannot be sold to the consumer. 

For the MGChSP, Mughal [1] proposed the plan for 
Pareto distribution of the 2nd kind using the mean as 
quality parameter. For the Pareto distribution of the 
2nd kind, it has been used by several researchers 
including Aslam et al. [2] for progressive censoring 
on the single acceptance sampling plans (SSP), 
Aslam et al. [3] for economic reliability based on 
multiple inspection and Aslam et al. [4] for multiple 
inspection without the economic reliability element. 

Apart from the mean as quality parameter [5]-[6], 
researchers have the options to use median or 
percentile when proposing a sampling plan. For 
instance, the median has been used by Gogah and 
Al-Nasser [7] when proposing the SSP for a product 
that has exponential distribution as its lifetime. For 
the percentile, it has been demonstrated by 
Kaviyarasu and Fawaz [8] when they studied the 
SSP for modified Weibull distribution. 

All the above sampling plans [1] – [8] have been 
developed by minimizing the consumer’s risk, ߚ and 
overlooked at the other risk related to the acceptance 
sampling, which is producer’s risk, ߙ. The ߚ is 
defined as the probability of accepting a bad lot 
while the ߙ is the probability of rejecting a good lot 
[9]. The two risks emerge in acceptance sampling as 
acceptance sampling only inspects the sample, not 
the whole lot. 

There is a method in acceptance sampling where 
both risks are considered and it is called minimum 
angle method. This article proposes to develop the 
MGChSP considering both risks, consumer and 
producer, or known as the minimum angle method 
as we noted that the previous MGChPSP only 
catered the consumer and ignored the producer. 
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2. Minimum Angle Method 

The minimum angle is a method, where both risks 
associated with acceptance sampling (ߚ and ߙ) are 
considered. The method considers the tangent angle 
between the lines joining the points A (ଵ, 1 −  (ߙ
and point B (ଶ,  .as shown in Figure 1 (ߚ

 

Figure 1. The minimum angle method by 
Ramaswamy and Sutharani [10] 

In order to calculate the angle, the trigonometric 
function (tangent) is applied and the angle is 
calculated by using the following formula 

tan ߠ =
ܥܤ
ܥܣ

=
ଶ) − (ଵ

(ଵ)ܮ − (ଶ)ܮ
. (1) 

For the minimum angle method, it has been applied 
to several sampling plans such as Bayesian double 
acceptance sampling plans (BDSP) by Suresh and 
Usha [11] and double acceptance sampling plans 
(DSP) by Ramaswamy Sutharani [10] [12]. 

3. Operating Procedure 

For MGChSP, the operating procedure is 

i. For each lot, the optimal number of groups, 
݃ is found satisfying two conditions, which 
are (i) the ߚ and ߙ are below 0.10, and (ii) 
the ݃ has the smallest angle. 

ii. The number of products, ݎ is allocated to 
the ݃ groups 

iii. The test termination time, ݐ for the 
inspection activity is specified. 

iv. During the inspection activity, the number 
of defectives, ݀ is counted. 

v. Accept the current lot if ݀ = 0 provided 
that the preceding ݅ samples have at most 
one defective. 

vi. Reject the current lot if ݀ > 0. 
 
 

4. Probability of Lot Acceptance 

The probability of lot acceptance, ()ܮ for the 
MGChSP is given by 

()ܮ = (1 − (ାଵ)( 
݅ݎ݃
1 − 

+ 1൨. (2) 

5. Fraction Defective 

In this article, the fraction defective,  is derived by 
using the cumulative distribution function (CDF) of 
generalized exponential distribution. The 
generalized exponential distribution has been used 
by Aslam, Kundu and Ahmad [13], Aslam et al. [14] 
and Rasmaswamy and Jayasri [15]. 

In this article, the  for generalized exponential 
distribution is given by  

 = 1 − ݔ݁ −ܽ ൭
1

ߤ
ൗߤ
൱൩

ఒ

. (2) 

The article deals with the ߚ and ߙ, therefore there is 
difference between the  at the consumer and 
producer levels. At the consumer level, the  is 
calculated when the mean ratio is 1 while at the 
producer level, the  is obtained when mean ratio 
ranges from 2 to 12. 

The performance of the MGChSP is measured based 
on the ݃. The ݃ is only obtained when (i) ߙ ≤ 0.10, 
(ii) ߚ ≤ 0.10 and, (iii) the theta has the smallest 
value. Apart from that, the pattern of the ݃ is 
observed at various values of design parameters 
such as ߣ = {2, 3}, ܽ =
{0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00} and 
(݅, (ݎ = {(1, 2), (2, 3), (3, 4), (4,5)}. 

6. Discussion and Application 

Tables 1 and 2 show the ݃ for generalized 
exponential distribution at different values of shape 
and design parameters. 

Based on Tables 1 and 2, the ݃ decreases as the 
specified constant, ܽ increases. The finding is the 
evident that when a product is tested for a longer 
period of time (ܽ is higher), then the likelihood to 
find one defective product is higher compared to the 
shorter testing time. For instance, the ݃ decreases 
from 165 to 2 when the ܽ increases from 0.25 to 2 
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while the other design parameters are set at 
ቀߣ, ఓ

ఓబ
, ݅, ቁݎ = (3, 6, 1, 2). 

Besides the ܽ, the ݃ also decreases as the number of 
preceding lots, ݅ and the number of products, ݎ 
increase. The pattern explains that if a company does 
the inspection with more information from the 
previous lot and the inspection platform allows more 
products to be placed on it, therefore less ݃ is 
required. This scenario eventually leads to the less 
inspection time since there is less groups to be 
inspected. 

For the ߠ, it is getting larger when the ܽ increases. 
For example, the ߠ is 0.63260 when the ܽ is 0.25 
while the other design parameters are ቀߣ, ఓ

ఓబ
, ݅, ቁݎ =

(3, 6, 1, 2). The ߠ increases to 34.50869 when the 
ܽ increases to 2.00. 

The above finding is significant for the industrial 
practitioners when they want to design the 
MGChSP. They can design the MGChSP with low 
testing time as it shows that as the testing is lower, 
the ߠ created is smaller, and closed to 0. The 0 is 
very important in this study as it resembles the ideal 
operating characteristic (OC) curve. The ideal OC 
curve is actually depicted by AC line in Figure 1. 

Wood [16] listed a total of nine failure time (in 
hours) for a computer software: 5218, 4422, 3625, 
3058, 2490, 1893, 1430, 968, 519. Aslam et al. [13] 
has shown that the above failure time follows 
generalized exponential distribution with 3 as the 
shape parameter. If the computer software is 
scheduled to be inspected using MGChSP using the 
minimum angle method with ቀ ఓ

ఓబ
, ݅, ,ݎ ܽቁ =

(4, 2, 3,1) as the design parameters, then the ݃ is 2. 
Take a sample of 6 and allocate 3 computer software 
into 2 groups. Accept the lot if there is no defective 
in the current lot given that there is at most one 
defective in the previous 2 lots. Otherwise, the 
current lot is rejected. 

7. Conclusion 

The MGChSP is developed by using the minimum 
angle method, where the method caters both risks, ߚ 
and ߙ. The plans improve the previous MGChSP as 
the previous MGChSP only catered the ߚ. Apart 
from improving the previous MGChSP, the ߠ 
presented is actually the smallest theta and, it should 
resemble the ideal OC curve.  

The generated tables acts as a tool for the industrial 
practitioners when designing the MGChSP. The 
table are generated at various values of design 
parameters and the industrial practitioners have the 
edge to select what design parameters they want to 
use for the inspection. 

Finally, the MGChSP can be further studied by 
using (i) different quality parameter (median or 
percentile), (ii) using different underlying 
distributions (Poisson distribution, weighted 
binomial distribution) and, (iii) another lifetime 
distributions (Weibull distribution). 

Glossary of Symbols 

݃ : Optimal number of groups 
 Consumer’s risk : ߚ
 Producer’s risk : ߙ
 ଵ : Fraction defective at the producer level
 ଶ : Fraction defective at the consumer level
 Probability of lot acceptance at the : (ଵ)ܮ

producer level 
 Probability of lot acceptance at the : (ଶ)ܮ

consumer level 
 Number of products :  ݎ
  : Test termination timeݐ
݀ : Number of defectives in the current lot 
݅ : Number of preceding lots 
݀ : Number of defective in the ݅ lots 
ܽ : Specified constant 
 Shape parameter : ߣ
ఓ
ఓబ

 : Mean ratio 



Int. J Sup. Chain. Mgt  Vol. 8, No. 5, August 2019 

1090 

Table 1. The ࢍ for generalized exponential distribution (ࣅ = ) 

   Generalized exponential distribution, ࣅ =  

  
  

Specified constant, ܽ 

mean ratio ݅ 2 1.75 1.5 1.25 1 0.75 0.5 0.25 ݎ 

2 

1 2 - - - - - - - - 

2 3 - - - - - - - - 

3 4 - - - - - - - - 

4 5 - - - - - - - - 

4 

1 2 
- - - - - - - - 

     
  

 

2 3 
8 - - - - - - - 

(3.20036)  
      

3 4 
5 - - - - - - - 

(3.09885) 
       

4 5 
3 1 - - - - - - 

(3.11437) (9.58979) 
      

6 

1 2 
26 7 3 2 - 1 - - 

(3.02676) (9.58665) (17.26457) (24.00782)  (34.65002)   

2 3 
13 4 2 1 - - - - 

(2.95460) (9.32650) (16.49435) (23.30124)     

3 4 
8 2 1 - - - - - 

(2.91688) (9.20969) (16.30348)    
  

4 5 
5 2 1 - - - - - 

(2.89149) (9.25798) (16.35366)   
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Table 1 continued. 

8 

1 2 
30 9 4 3 2 1 1 1 

(2.94280) (9.28999) (16.48008) (23.05332) (28.49694) (34.30741) (36.53942) (38.63136) 

2 3 
14 4 2 2 1 1 - - 

(2.89574) (9.12704) (16.15804) (23.00753) (27.93128) (32.49748)   

3 4 
9 3 1 1 - - - - 

(2.87025) (9.06842) (16.14488) (22.47487)     

4 5 
6 2 1 1 - - - - 

(2.85440) (9.01396) (15.92784) (23.10628)   
  

10 

1 2 
32 9 5 3 2 2 1 1 

(2.89939) (9.14306) (16.19233) (22.67353) (28.10205) (32.46136) (36.28535) (38.26339) 

2 3 
16 5 2 2 1 1 1 - 

(2.86580) (9.02935) (16.01795) (22.53592) (27.67012) (31.98313) (35.65662)  

3 4 
9 3 2 1 1 1 - - 

(2.84739) (8.96597) (16.01076) (22.20321) (27.91273) (32.85646)   

4 5 
6 2 1 1 1 - - - 

(2.83566) (8.92619) (15.77603) (22.51438) (28.71164)    

12 

1 2 
34 10 5 3 2 2 2 1 

(2.87385) (9.05375) (16.02991) (22.46844) (27.88694) (32.08844) (35.66650) (38.05923) 

2 3 
17 5 3 2 1 1 1 1 

(2.84867) (8.96493) (15.90147) (22.29668) (27.53719) (31.72109) (35.22518) (38.09578) 

3 4 
10 3 2 1 1 1 1 - 

(2.83473) (8.91644) (15.85548) (22.07332) (27.58701) (32.23911) (36.12753)  

4 5 
7 2 1 1 1 1 - - 

(2.82685) (8.88602) (15.70755) (22.24236) (28.06132) (33.11269)   
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Table 2. The ࢍ for generalized exponential distribution (λ=3) 

   Generalized exponential distribution, ࣅ =  
   

Specified constant, ܽ 

mean ratio ݅ 2 1.75 1.5 1.25 1 0.75 0.5 0.25 ݎ 

2 

1 2 - - - - - - - - 

2 3 - - - - - - - - 

3 4 - - - - - - - - 

4 5 - - - - - - - - 

4 

1 2 
134 22 8 4 2 - - - 

(0.65376) (3.71352) (8.98840) (15.38456) (22.40460)    

2 3 
66 11 4 2 1 - - - 

(0.64262) (3.63888) (8.77934) (14.98385) (21.75001)    

3 4 
39 6 3 1 1 - - - 

(0.63654) (3.60098) (8.72205) (14.99493) (20.93111)   
 

4 5 
26 4 2 1 - - - - 

(0.63277) (3.57480) (8.65668) (14.67499) 
 

 
  

6 

1 2 
165 27 11 6 4 3 2 2 

(0.63260) (3.57318) (8.60549) (14.65610) (20.71682) (26.17167) (30.57407) (34.50869) 

2 3 
80 13 5 3 2 1 1 1 

(0.62824) (3.54289) (8.51734) (14.49075) (20.45973) (25.85822) (30.13745) (33.98005) 

3 4 
47 8 3 2 1 1 1 - 

(0.62584) (3.52598) (8.46904) (14.43386) (20.27551) (25.73959) (30.71202)  

4 5 
31 5 2 1 1 1 - - 

(0.62433) (3.51580) (8.43894) (14.33341) (20.38582) (26.25711)   
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Table 2 continued. 

8 

1 2 
 187 31 12 6 4 3 2 2 

 (0.62617) (3.52906) (8.48103) (14.42193) (20.33854) (25.63014) (30.05585) (33.65531) 

2 3 
 90 15 6 3 2 2 1 1 

 (0.62403) (3.51378) (8.43683) (14.33038) (20.19839) (25.58735) (29.79976) (33.36730) 

3 4 
 53 9 4 2 1 1 1 1 

 (0.62285) (3.50539) (8.41858) (14.28571) (20.14996) (25.37195) (29.93074) (33.77183) 

4 5 
 35 6 2 1 1 1 1 1 

 (0.62211) (3.50013) (8.40191) (14.27881) (20.12133) (25.53697) (30.27882) (34.39439) 

10 

1 2 
 204 34 13 7 5 3 2 2 

 (0.62353) (3.51061) (8.42860) (14.31735) (20.19675) (25.42526) (29.85630) (33.32497) 

2 3 
 98 16 6 3 2 2 1 1 

 (0.62232) (3.50188) (8.40337) (14.27373) (20.10579) (25.36459) (29.67947) (33.14926) 

3 4 
 57 10 4 2 1 1 1 1 

 (0.62165) (3.49711) (8.38938) (14.23676) (20.10931) (25.25221) (29.67844) (33.32398) 

4 5 
 38 6 3 2 1 1 1 1 

 (0.62123) (3.49422) (8.38467) (14.25411) (20.04118) (25.32101) (29.82948) (33.58794) 

12 

1 2 
 218 37 14 8 5 3 3 2 

 (0.62224) (3.50147) (8.40221) (14.26765) (20.10736) (25.33049) (29.69651) (33.16980) 

2 3 
 104 17 7 4 2 2 1 1 

 (0.62148) (3.49597) (8.38597) (14.23581) (20.06434) (25.26530) (29.62535) (33.05119) 

3 4 
 61 10 4 2 2 1 1 1 

 (0.62107) (3.49294) (8.37677) (14.21562) (20.06061) (25.20097) (29.57135) (33.13586) 

4 5 
 40 7 3 2 1 1 1 1 

 (0.62081) (3.49107) (8.37287) (14.22020) (20.00831) (25.23358) (29.65060) (33.27143) 



Int. J Sup. Chain. Mgt  Vol. 8, No. 5, August 2019 

1094 

Acknowledgement 

This research was supported by Fundamental 
Research Grant Scheme (FRGS) Grant (S/O Code: 
14178). 

References 

[1] Mughal, A. R. (2018). A family of group chain 
acceptance sampling plans based on truncated 
life test. (Unpublished Doctoral dissertation.) 
Universiti Utara Malaysia, Sintok, Kedah, 
Malaysia. 

[2] Aslam, M., Huang, S. Y., Jun, C. H., Ahmad, 
M. & Rasool, M. (2011). A reliability sampling 
plan based on progressive interval censoring 
under Pareto distribution of second kind. 
IEMS, 10(2), 154-160. 

[3] Aslam, M., Mughal, A. R., Hanif, M., & 
Ahmad, M. (2010). Economic reliability group 
acceptance sampling based on truncated life 
tests using Pareto distribution of the second 
kind. Communications for Statistical 
Applications and Methods, 17(5), 725-731. 

[4] Aslam, M., Mughal, A. R., Ahmad, M., & Zab, 
Y. (2010). Group acceptance sampling plans 
for Pareto distribution of the second kind. 
Journal of Testing and Evaluation, 38(2), 143-
150. 

[5] Teh, M. A. P., Aziz, N., & Zain, Z. (2016). 
Time truncated group chain sampling plans for 
Rayleigh distribution. Global Journal of Pure 
and Applied Mathematics, 12(4), 3693-3699. 

[6] Teh, M. A. P., Aziz, N., & Zain, Z. (2019). 
Time truncated group chain sampling plans for 
gamma Distribution. International Journal of 
Innovative Technology and Exploring 
Engineering, 8(5S), 62-65. 

[7] Gogah, F. S., & Al-Nasser, A. D., (2018). 
Median ranked acceptance sampling plans for 
exponential distribution. Afrika Matematika, 
29(3-4), 477-497. 

[8] Kaviyarasu, V., & Fawaz, P. (2017). Certain 
studies on acceptance sampling plans for 
percentiles based on the modified Weibull 
distribution. International Journal of Statistics 
and Systems, 12(2), 343-354. 

[9] Montgomery, D. C. (2009). Statistical quality 
control: a modern introduction (6th ed.). 
Arizona: Wiley. 

[10] Ramaswamy, A. R. S., & Sutharani, R. (2013). 
Designing double acceptance sampling plans 
based on truncated life tests in Rayleigh 
distribution using minimum angle method. 
American Journal of Mathematics and 
Statistics, 3(4), 227-236. 

[11] Suresh, K. K., & Usha, K. (2016). Construction 
of Bayesian double sampling plan using 

minimum angle method. Journal of Statistics 
and Management Systems, 19(3), 473-489. 

[12] Ramaswamy, A. R. S., & Sutharani, R. (2014). 
Designing double acceptance sampling plans 
based on truncated life tests under various 
distributions using minimum angle method. 
International Journal of Scientific & 
Engineering Research, 5(1), 626-640. 

[13] Aslam, M., Kundu, D., & Ahmad, M. (2010). 
Time truncated acceptance sampling plans for 
generalized exponential distribution. Journal 
of Applied Statistics, 37(4), 555-566. 

[14] Aslam, M., Kundu, D., Jun, C. H., & Ahmad, 
M. (2010). Time truncated group acceptance 
sampling plans for generalized exponential 
distribution. Journal of Testing and 
Evaluation, 39(4), 1-7. 

[15] Ramaswamy, A. R. S., & Jayasri, S. (2012). 
Time truncated chain sampling plans for 
generalized exponential distribution. 
International Journal of Computational 
Engineering Research, 2(5), 1402-1407. 

[16] Wood, A. (1996). Predicting software 
reliability. IEEE Transactions Software 
Engineering, 29(11), 69-77. 


