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Abstract—Recently, the use of Unmanned Aerial Vehicle 
(UAV) for delivery services has become a topic of interest 
and research for large commercial service providers such as 
Google and Amazon. The delivery speed of UAVs provides 
such companies with a significant a dvantage i n their 
market. Although utilizing the UAVs in product delivery 
has received tremendous excitement, several issues need 
to be resolved prior to real-world implementation. The 
first i ssue w ith u sing U AVs a s a  t ransportation m ode is 
their limited flying r ange. S mall U AVs a re n ot a ble to 
fly l ong d istances d ue t o t heir l imited b attery l ife. Flight 
range can be improved by using battery swapping stations 
in the planning horizon. UAVs can replace their depleted 
batteries at these stations and continue their fights. In our 
research, we attempt to develop a model to construct a 
network of such stations in order to enable the UAVs to fly 
long distances for making deliveries to far-reaching demand 
points. In addition, we develop a Tabu-Search heuristic to 
solve several instances of the proposed problem.

Keywords—Last mile delivery, Network design, Un-
manned Aerial Vehicle (UAV), Facility location, Optimiza-
tion, Transportation.

I. INTRODUCTION

The application of Unmanned Aerial Vehicles (UAVs)
for last mile delivery has gained much attention as it
has taken serious legal steps toward becoming a viable
alternative. Two well-known companies, Google and
Amazon, are exploring this type of delivery mechanism
as a part of their newest technology innovation
strategy (Google X [1] Amazon Prime Air [2]). Other
applications of UAVs include disaster relief, border
security, and agriculture. UAVs are most effective in
developing countries with road deficiencies a s w ell as
in developed countries with congestion problems. In
disaster relief missions, when roads become unpassable,
UAVs can become very effective in delivering medicine

and first aid packages.
Small UAVs can fly at low altitudes and avoid obstacles;
however, due to their battery capacity, they have limited
payload size and travel distance. For example, Micro
UAVs can fly for only one hour and carrying a maximum
load of 5 kilograms [3]. Operations with intensive time
and distance requirements would need a system of UAVs
along with a set of automated service stations to enable
battery swapping. Such stations currently exist and
they operate automatically without the need for labor [4].

II. PROBLEM DEFINITION

The problem that is considered in this paper is
constructing a network of battery swap stations (BSS)
to support UAV delivery routes. In order to enhance the
flying range of the UAVs, a set of BSS should be located
in the planning area such that a UAV can use them in
order to satisfy the demand at the delivery points. The
planning area is the geographical area that covers the
demand points that should be visited by UAVs. There
are two cost components associated with establishing
a BSS: 1) construction cost and 2) operational cost.
Construction cost is the cost of building the BSS and
is a one-time cost. Operational cost is the cost of
maintaining the BSS, which includes the energy cost
of recharging the batteries once they become depleted.
Alternatively, operational costs can account for a ground
crew that regularly visits the stations and replaces the
depleted batteries with charged ones. Once a station
runs out of batteries, it becomes not functional. The
mathematical model, presented in section 5, allows for
considering different types of BSS; because in practice,
BSS are not necessarily identical and can have different
battery capacities. A Tabu search (TS) is proposed as
the methodology in section 6. The operators of the
TS are developed based on performance measures that
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focus on demand potential, network enhancement, and
cost-benefit ratio of the location candidates. In section 6,
an initialization procedure for finding a feasible solution
is developed based on dynamic programming. The
effectiveness of dynamic programming on both solution
quality and running time is studied and discussed in
section 7, computational study. The computational study
is performed to provide useful insights on the use of
the model and the solution methodology. The results
are based on 300 instances that differ in the area of
coverage, number of demand locations, and demand
magnitudes. The results show that as the complexity
of the instances grows, the developed TS outperforms
CPLEX both in solution quality and running time. The
computational study considers four types of BSS with
different costs and battery capacities.
It is worth noting that the difference between classic
problems in the literature and the proposed research
problem are in two areas. The first area of difference
is within the facility location problem (FLP). Our
research problem is partly a facility location problem
for a network of BSS. The classical FLP assumes
independence among facility locations, meaning that
there is no relationship between them. However,
the nature of our problem requires consideration of
relationships between locations because each UAV
depends on several BSS in order to access the demand
points. In other words, a single BSS cannot support
the UAV trip independently. The closest class of FLP
to our problem, that is studied in the literature is FLP
problems with a backup facility for each customer [5]
but still does not consider the relationship between two
facilities. The second area of difference is within the
location routing problem (LRP). Our research problem
is partly a location routing problem (LRP). In this class
of research, the main focus of the literature is to locate
the facilities such that the cost of routing between
customers is minimized [6], [7]. Similar to FLP, this
category of problems does not study the routing between
depots. It focuses on the vehicles that start their trips
from a depot and deliver products to customers on the
route before going back to the depot. In our research
problem, in order to deliver a product to a customer,
UAVs rely on a network of BSS which are essentially
depots, not customers. As a result, unlike LRP, that
studies the location of one depot, our research problem
requires determining the locations of multiple depots
(battery swap stations). The only known locations in the
problem are the demand points. The same difference
exists with our problem and the coverage problem (CP).
CP does not study the relationship between facilities
nor the routing between them. The only impact of two
facilities on each other is whether their covered areas
overlap or not. In figure 1, the difference between FLP,

CP and the proposed problem in this paper is illustrated.
Let C1, C2, and C3 be considered as potential locations,
in addition, let S and D be the supplier and a customer
(demand point) respectively. The arcs around C1 and
C3 represent the coverage radius. A facility location
formulation would locate C3 in order to cover the
customer and a coverage formulation would locate
C1 and C3 to cover the maximum area. However, for
the proposed problem in the present paper, all three
locations should be properly located in order to route a
UAV from the supplier to the customer.
The remainder of this paper is structured as follows:

Section 3 reviews the existing literature. Section 4
describes the assumptions considered as well as the
notations used. Section 5 presents the mathematical
model and is followed by a detailed discussion on the
solution methodology in section 6. A computational
study is discussed in section 7 to illustrate the model and
the performance of the developed solution methodology.
We conclude by summarizing the paper and presenting
future work in the last section.

III. LITERATURE REVIEW

Due to the increasing popularity of both UAVs and
Electric Vehicles (EV) among the public and businesses,
there has been increased attention toward designing
and expanding their support systems. EVs have gained
a significant market share in the automobile market
due to its economical and environmental incentives.
Similarly, the use of UAVs in the last mile delivery
has become a more realistic alternative since it has
taken serious legal steps toward becoming a mode of
delivery. Several research studies have begun to explore
the design of service stations for both. Such service
stations are generally to provide energy support for the
vehicles’ operations. Although this paper is focused on
designing a network for commercial UAVs, EVs have a
similar logistics system that involves charging stations.
Therefore, in addition to UAV papers, EV papers are
reviewed in this section. The focus is on reviewing a
portion of literature that is closely related to the present
topic, designing a network of BSS to support delivery
operations. The existing literature has investigated the
problem from three different perspectives of 1) locating,
2) routing and 3) scheduling/planning (Figure 2).
Figure 2 classifies the literature and positions published
articles in their corresponding areas. We believe the
present paper is best positioned in the crossover of
locating and routing where the simultaneous decision
making of both locating the stations and routing the
vehicles is studied.

Locating: The first group of research articles is
concerned with locating the service stations; therefore
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Figure 1: Small sample to show the difference of facility location and coverage problem with proposed problem.

Figure 2: Classification of literature based on the mod-
eling approach and application area

the approach taken is typically modeling the problem as
a Facility Location Problem (FLP) or Flow-Refueling
Location Model (FRLM). A range of different
constraints is considered in the literature to customize
the problem for different purposes. Godzdanker et al. [8]
proposes a p-median problem to locate a fixed number
of stations. They extended their work in [9] by studying
the station location problem while considering the UAV
flight path. He et al. [10] optimizes the location of public
charging stations for electric vehicles on a network of
roads with the assumption of determining tour paths
and recharging plans simultaneously by drivers. They
formulated the problem as a bi-level mathematical
program to minimize the travel and recharging time
and solved it using a genetic algorithm. Cavadas et
al. [11] proposes a mixed integer programming model
to locate the EV slow-charging stations. In this problem,
drivers can stop at various locations but they can only
charge the EV at one of the charging stations. The

travelers parking locations and their daily activities are
considered in this model. Frade et al.[12] studies the
location of EV charging stations in Lisbon, Portugal by
developing a maximal covering model. They determine
the number and capacity of the stations to be installed.
Yang et al. [13] develops a linear integer model to
maximize the profit by determining the location of
BSS. The model contains constraints to guarantee
a customer satisfaction level. Customer satisfaction,
which is modeled as a function of ”range anxiety” and
”loss anxiety”, is represented in both deterministic and
fuzzy scenarios. A Tabu search combined with a greedy
randomized adaptive search is developed to efficiently
solve the problem. In a similar work, Guo et al. [14]
examines the battery charging station location problem,
considering users range anxiety and distance deviations,
the two major barriers to the mass adoption of electric
vehicles. Zhang et al. [15] studies the capacitated FRLM
for EVs with consideration of multiple time periods
and different demand dynamics over time. The model
determines the location of charging stations as well as
the number of charging modules at each station. Lee
and Han [16] develops a mixed integer nonlinear model
to formulate an extended version of FRLM problem to
account for probabilistic travel range. This is due to
factors such as road conditions. They propose a solution
methodology that combines Benders decomposition and
column generation.

Routing: Another group of articles focuses on
routing the EVs and UAVs (Figure 2). They generally
use variations of the Vehicle Routing Problem (VRP)
and consider relevant constraints to model a specific
application area [17]. Russell and Lamont [18] studies
Genetic Vehicle Representation (GVR), an approach
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to solving instances of VRP with a genetic algorithm.
They argue the effectiveness of the method for UAV
routing. Levy et al. [19] considers the routing of
unmanned vehicles (UV) with fuel constraints for
multiple target locations while multiple fuel stations (or
depots) exist. They minimize the total travel cost of
vehicles, while each target is visited at least once by a
vehicle and the fuel constraint is satisfied. Two heuristic
methods of variable neighborhood decent (VND) and
variable neighborhood search (VNS) are developed to
find reasonable solutions for large instances. Sunder
et al. [20] considers a single UAV routing problem
with fuel constraints and multiple depots when the
UAV is allowed to refuel at any depot. The objective
is to minimize the total fuel required while each target
is visited once. They propose a mixed-integer linear
programming (MILP) model to find optimal solutions.
Hiermann et al. [21] introduces a new approach by
combining two problems, Fleet Size Mix Vehicle
Routing Problem with Time Windows (FSMFTW),
and Electric Vehicle Routing Problem with Time
Windows and Recharging Stations (EVRPTW). They
propose a mixed integer programming (MIP) model
for the problem and solve smaller instances using a
branch-and-price method. To solve real size problems,
they develop a meta-heuristic approach based on an
Adaptive Large Neighborhood Search. Strehler et al.
[22] develops a general model for routing of electric
and hybrid vehicles with intermediate stops at charging
stations. It shows that recharging both in nodes and
on edges adds combinatorial variety to the classic
constrained shortest path problem, which may lead the
energy efficient routes to contain cycles. Montoya et al.
[23] investigates the impact of the non-linear nature of
battery charging time on the routing of electric vehicles.
They also propose a hybrid meta-heuristic as a solution
methodology. The results suggest that neglecting the
non-linearity in charging time may lead to infeasible or
expensive solutions.
Scheduling/Planning: This area of research is mainly
concerned with the deployment of UAVs and EVs for
various missions. Kim et al. [24] develops a MILP
model to schedule the movements of a system of UAVs
with multiple shared bases in disparate geographic
locations to complete a mission. They provide a genetic
algorithm to solve problem instances. Song et al. [25]
extends the work in [24] by allowing for arbitrary UAV
initial locations and fuel levels over a finite horizon.
They improve the heuristic method described in [26]
and propose a new algorithm to allow for arbitrary
fuel levels and UAV locations. Lee and Morrison [27]
develops a MILP to efficiently use a system of UAVs for
maritime search and rescue operations when accidents
occur. They do not determine optimal UAV motion

paths but address the task allocation to complete
search and rescue missions. They consider limited
UAV fuel capacity and changing the priority of the
search task over time. Ji and Xia [28] proposes an
approximate analytical method to minimize the number
of identical automated guided vehicles (AGVs) in
order to guarantee the ”stability” of the corresponding
transportation system. Stability is defined as maintaining
a stable level of waiting orders over time. A numerical
example based on simulation is provided to illustrate
the analytical method. There is a rise of predictive
analytics in this research space; for example, Xu et
al. [29] proposes a predictive mixed logit model that
reveals the behavioral preferences of EV users in
Japan toward charging mode selection (normal or fast)
and charging location selection (home/company or
public station). This study shows that battery capacity,
midnight indicator, initial state of charge and number
of past fast charging events are the main predictors. In
a different study [30] distribution of similar products
to cities within the same region where each supplier
has an extensive distribution network is investigated.
They developed solution procedures that guide the
problem-solving process and quickly lead to a good
routing solution.

Routing & Scheduling/Planning: One of the
relevant papers in the crossover of routing and
scheduling/planning areas is written by Barco et al.
[31]. They present a differential evolution algorithm
for solving an electric vehicle routing problem. The
problem is formulated in order to coordinate routing and
recharge scheduling with the objective of minimizing
operational and battery degradation costs. The effect
of scheduling and route assignment on battery life and
degradation is investigated.

Locating & Scheduling/Planning: Kim and Morrison
in [26] focuses on the joint determination of 1) the
number and locations of UAV service stations and 2)
their schedules to provide service to customers. They
propose a MILP model to optimally locate service
stations and schedule a fleet of capacitated UAVs.
The authors assume returning flights and deterministic
demand. They also develop a branch and bound
algorithm as the solution methodology.

Locating & Routing: This research area is focused
on the simultaneous optimization of location and routing
decisions. It contains papers that mostly use the Location
Routing Problem (LRP) as their modeling framework.
They study the problem for EVs with the objective of
locating the charging stations as well as routing the
vehicles. Worely et al.[32] formulates the problem of
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locating charging stations as well as designing routes
using discrete integer programming. Vehicles originate
from a single depot and must satisfy the entire demand at
demand locations. The setting of the problem is identical
to the traditional assumptions of the VRP. One of the
prominent studies in this research space is performed
by Yang and Sun [33] who models BSS location routing
problem for EVs as an integer program and develops two
heuristic solution methodologies to solve the problem.
One of the methodologies uses Tabu search and the
Clarke Wright algorithm while the other is a four-stage
method composed of sweep algorithm, adaptive large
neighborhood search, an iterative greedy, and a split
procedure. The problem assumes a single depot and
determines the location of BSSs, allocate customers to
EVs, allocate EVs to BSSs, and designs the tours to
serve customers. They introduce two versions of the
problem, basic and extended. In the basic version, the
maximum number of visits to each BSS is restricted
to one visit per vehicle, while the extended version
allows multiple visits per vehicle. Hof et al. in [34]
extends the work presented by Yang and Sun [33]
by introducing a new solution methodology, Adaptive
Variable Neighborhood Search (AVNS), and providing
new best solutions. Another variant of LRP for EVs
is introduced by Schiffer and Walther [35] where time
widows and partial recharging are allowed. They also
examine additional objective functions besides minimiz-
ing the total travel distance. In a recent study, Schiffer
et al. [36] introduces a location routing problem (LRP)
with intra-route facilities and multiple resources (LRPIF-
MR) which allows for intra-route facilities of three types:
recharging energy, replenishing freight, and combined
facilities. The numerical study shows that adding both
pure replenishment and combined facilities would lower
vehicle costs and routing costs in electrical commercial
vehicle logistics networks.
To the best of our knowledge, the paper by Yang and
Sun in [33] which addresses a simultaneous routing and
locating decision for EVs with swappable batteries is the
closest research in the literature to our paper. However,
their model considers uncapacitated BSS which can
be a valid assumption for electric vehicles system but
certainly not a realistic assumption for UAV battery swap
stations. Capacitated BSS does not allow one to form a
queue of vehicles at each station which is a reasonable
assumption for UAVs that are in the flying mode and are
running out of battery. Another main area of difference is
in the routing modeling approach. In this paper, we route
the UAVs with the objective of minimizing the lost sales,
while Yang and Sun in [33] takes a more conventional
approach by minimizing the routing cost. Depending on
the application area and the business model, any of these
two approaches can be utilized to serve the customers.

IV. ASSUMPTIONS

This section explains the fundamental assumptions
that are considered for developing the mathematical
model.
• All UAVs are considered identical and have a lim-

ited flying range which is assumed to be constant.
• A UAV can only carry one unit of product during

a trip from a supplier to a customer.
• The returning flight from a customer back to the

supplier is through the same route as the delivery
trip. This implies that the same number of battery
will be needed for the returning flight.

• The supplier point in the network (i.e., depot node)
is where UAVs initiate their trips.

• The depot node does not have any restriction con-
cerning the number of UAVs it can serve.

• Customer points in the network (i.e., demand
points) are the destinations.

• Battery Swap Stations (BSS) are the transient nodes
in the network to support the battery need of UAVs
along their trips to the demand points.

• The serving capacity of a BSS is one UAV at a time.
• Any point inside the planning area can be a posi-

tional location candidate for a BSS due to the small
size of this device. A BSS can be placed on the top
of a building or in a vacant field.

• There can be different types of BSS with the main
difference being the number of batteries that they
can hold (i.e., referred to as K in notations).

• The number of batteries to hold directly impacts the
construction and operational cost of a BSS.

• Since each station gradually depletes as it serves
the UAVs, a pre-determined schedule is considered
to replenish the BSS with full batteries. This can
be achieved in two ways, by a ground crew that
delivers batteries to the stations or allocating the
time needed for recharging the used batteries inside
the BSS.

• Each customer location has a stochastic demand
with a known probability function prior to the
planning.

• A lost sale with a large penalty cost is permitted.
• Time is treated via discrete time slots (i.e. referred

to as T in notations).

A. Notations

This section lists the notations used in the paper and
their associated definitions.
• Sets

– S: Set of all suppliers
– D: Set of all demand points
– B: Set of all candidate locations for battery

swap stations
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– A: Set of all arcs between locations
– T : Set of all time slots. At the end of each time

slot, all the batteries are assumed to be avail-
able, charging or ground crew replenishing.

– K: Set of all types of battery swap stations
– Ω: Set of all scenarios
– FS(i): Set of all node j that arc i− j exist in

the network
– RS(i): Set of all node j that arc j− i exist in

the network

• Parameters

– dω
i : Demand size of demand point i in scenario

ω

– bk: Number of batteries available at battery
swap stations type k

– cl : Penalty cost for each lost sale
– ck

s : Cost of constructing a battery swap station
type k

– ck
o: Operational cost of a battery swap station

in one period type k
– pω : The probability of each scenario ω

• Decision Variables

– Xωt
i j Number of travels between locations i and j at

time t in scenario ω

– V ωt
i the total amount of satisfied demand for location

i in period t in scenario ω (unrestricted in sign)
– Lω

i Lost sale for demand point i in period t in
scenario ω

– Zk
i 1 if we construct batteries swap station i. 0

Otherwise
– Okt

i 1 if battery swap station type k is functional in
period t. 0 otherwise.

V. MATHEMATICAL MODEL

The mathematical model of the problem using the
defined notations is presented below:

Min ∑
i∈B,k∈K

ck
s ∗Zk

i + ∑
i∈B,k∈K,t∈T

ck
o ∗Okt

i + (1)

∑
i∈d,ω∈Ω

pω ∗ cl ∗Lω
i

Subject to

∑
j∈FS(i)

Xωt
i j − ∑

j∈RS(i)
Xωt

ji +V ωt
i = 0, (2)

∀i ∈ (S∪D∪B),∀t ∈ T,∀ω ∈Ω

∑
i∈D

V ωt
i +∑

i∈S
V ωt

i = 0, (3)

∀t ∈ T,∀ω ∈Ω

Lω
i + ∑

t∈T
V ωt

i = dω
i , (4)

∀i ∈ D,∀ω ∈Ω

∑
j∈FS(i)

2∗Xωt
i j ≤ ∑

k∈K
bk ∗Okt

i , (5)

∀i ∈ B,∀t ∈ T,∀ω ∈Ω

∑
k∈k

Zk
i ≤ 1, (6)

∀i ∈ B

∑
t∈T

Okt
i ≤ |T | ∗Zk

i , (7)

∀i ∈ B,∀k ∈ K

V ωt
i = 0, (8)
∀i ∈ B,∀t ∈ T,∀ω ∈Ω

Xωt
i j ≥ 0, Okt

i ,Z
k
i ∈ {0,1} (9)

∀i ∈ S, t ∈ T,k ∈ K,∀ω ∈Ω

The objective function (2) includes three parts; First
is the construction cost function associated with the
selected locations. The second term represents the op-
erational cost of the network, and the latter part is
the penalty cost for the lost sales. Constraint set (3)
is the flow balance constraint for suppliers, customers,
and BSS. Constraint set (4) assures that the amount of
supplied product is equal to the demanded product at
each time slot and scenario. V ωt

i is positive when i ∈ D
and is negative when i ∈ S. Constraint set (5) calculates
the amount of lost sales over all time slots. Constraint
set (6) assures that a UAV can only use an operational
BSS which has sufficient number of batteries to support a
round trip; therefore the multiplier 2 assures the batteries
are available for both originating and returning trips.
Constraint set (7) allows the problem only to construct
one type of station at each location. Constraint set
(8) assures that stations can only be operational if we
construct them and finally constraint set (??) does not
allow the BSS to become a demand point or the supplier.
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Lastly, constraint set (9) enforces non-negativity on the
decision variables.

A. Valid inequality

In this section, we introduce a valid inequality in
order to tighten the feasible region of the problem.
This inequality is estimated to reduce the time needed
to reach optimality by 35%. In order to develop this
inequality, the following proposition is defined:
Proposition 1 Each selected BSS candidate in the
optimal solution is adjacent to at least one other
selected BSS candidate or a supplier.

Proposition Assume the selected BSS candidate in the
optimal solution is not adjacent to any other selected
BSS candidate or a supplier. Thus, the UAV can access
it only from demand locations. Since loaded UAVs will
not be able to use the selected BSS candidate on their
delivery route, we can remove this BSS candidate from
the solution and obtain a better objective function value
which is a contradiction to our assumption. By using this
proposition, we can introduce a new valid inequality to
the problem in order to tighten the feasible region.

∑
k∈K

Zk
i ≤ ∑

j∈RS(i),k∈K
Zk

j {i ∈ B|(i,s) /∈ A,s ∈ S} (10)

This constraint set is defined on the BSS candidates that
are not adjacent to any supplier. In order to evaluate
the impact of the valid inequality, 10 random instances
are generated and solved optimally. Table I shows the
number of processed nodes when CPLEX solves the
instances with the valid inequality as well as without
it. Based on the random sample, the valid inequality
reduces the number of nodes processed by on average
11%.

VI. SOLUTION METHODOLOGY

In this section, the details of the developed Tabu
search for the proposed model is discussed. Tabu search
was first introduced by Fred W. Glover [37] as a meta-
heuristic search method to find a potential solution to an
optimization problem and explore its neighbors in order
to find an improved solution. This approach uses a mem-
ory construct to enhance the quality of the neighborhood
search. In TS, a list is utilized to escape local optima and
make the neighborhood search more efficient. At each
iteration, a set of neighbors for the current solution is
generated and the best neighbor, in terms of objective
function, will be selected. If the selected neighbor does
not violate the Tabu list moves, it will be used in the next
iteration as the current solution. The Tabu list consists of
all moves that we cannot make at each iteration. These
moves are determined based on previous iterations. The

Tabu list facilitates the process of escaping the local
optima. Note that in the selection process of TS, the
best neighbor among the generated neighbors will be
selected, which means it is possible to move to an
inferior solution compared to the current solution. For
our problem, the Tabu list structure is straightforward;
however, tuning the Tabu tenure and aspiration criterion
is essential to improve the results. Since, the element
of our Tabu list is BSS, an acceptable ratio between the
number of BSS and Tabu tenure has to be determined. If
the length of Tabu tenure is too long, it will prevent good
candidates from entering as new solutions. On the other
hand, if it is too short, the Tabu list will not be effective
in finding new areas that contain desirable solutions.

A. Solution Structure

The structure of the solution for the proposed algorithm
consists of three components. First, which BSS candi-
dates are selected to be constructed. Second, which types
of BSS are to be constructed at the selected location,
and the last one is at which time slost the stations are
functioning. In order to incorporate all three components
in the solution, the following structure is developed. Each
solution consists of three arrays. The size of the first
array is equal to the number of candidates (n), the size of
the second one is equal to the number of different types
of stations multiplied by the number of candidates (k∗n).
The last array is the number of time slots multiplied
by the number of candidates (t ∗ n). To further clarify,
assume we have two candidates, two types of BSS,
and three time slots. The following is an example of
a solution:
In this solution, the first row shows which candidate is

Figure 3: Structure of each solution in TS approach

selected. Second row indicates which types of stations
are selected to be constructed and finally the last row
shows in which time slots the stations are functioning.

B. Operators

In this section, we introduce the operators that are used in
the TS algorithm. In order to find an immediate neighbor
for a solution, two solution components can be altered.
First is the type of BSS and second is either adding or
removing a BSS based on some performance measures.
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Table I: Results of 10 Instances run with and without the valid inequality

# of Nodes Processed
With Valid Inequality Without Valid Inequality Difference

1 37 37 0%
2 91 91 0%
3 457 573 20%
4 721 722 0%
5 120 120 0%
6 4366 5245 17%
7 16461 28032 41%
8 6017 6871 12%
9 14439 16902 15%

10 147167 148891 1%

In the following section, the operators used in the TS are
introduced. We first define the performance measures for
adding operators.

1) Performance Measures

Different performance measures can be considered in
placing a station. First is the distance from demand
locations. A populated area with multiple demand
points, supplier locations, and other charging stations is
an excellent choice since they are in close proximity.
The new station can be used for delivering goods to
the demand points located in its coverage area, or
to other parts of the network, or even to improve the
coverage area of other charging stations. To this end, the
following performance measure, namely Performance
Measure Station, is defined:

PMS
i =

∑
j∈FS(i)

∑
ω∈Ω

dω
j

|Ω|
(11)

Equation 11 is the average accessible demand from
station i across all the scenarios. It essentially measures
the demand potential of a location candidate for a BSS.
The other impact of adding a new station is on improving
the coverage of the entire network. The selection process
favors the stations that make the entire network more
connected. For example, if selecting station i connects
two unconnected clusters of the network, it is preferable
than selecting a station that solely covers some demand
points and is disconnected from other parts of the
network. This performance measure seeks to incentivize
the creation of a coherent and well-connected network.
Let set Ns the largest connected component of a network
before adding station i and N′s be the largest connected
component of the network after adding station i. Hence,
we can define this performance measure, namely Net-
work Performance Measure. as follows:

PMN
i = |N′s|− |Ns| (12)

Equation 12 calculates the number of new stations that
become connected to the network (|Ns| is the cardinality
of set Ns).
So far, we have discussed the positive impacts of adding
a new station to the network. The other aspect is the
cost of adding a new station. To this end, we introduce
the Total Performance Measure of station i as follows:

PMT
i =

PMN
i ∗PMS

i

max
k∈K

ck
s

(13)

Equation 13 is an indicator of the benefit-cost ratio
(BCR) for station i. The numerator is the potential
benefits of adding station i (Connectivity and Coverage).
Since PMN

i does not increase with a rapid slope, it is
more representative of the impact when it is multiplied
by PMS

i . The denominator is the maximum cost of
constructing the station.
Given the performance measures above, we can define
the following insertion operators:

• Performance Measure Insertion (PM Insertion):
This operator constructs the BSS candidate that has
the highest value of PMS. If the BSS is already
constructed, the next station with the highest PMS

will be selected.
• Network Performance Insertion (PN Insertion):

The station with the highest value of PMN is
selected to be constructed.

• Total Performance Insertion (TP Insertion):
The station with the highest PMT value will be
inserted into the solution.

• Random Insertion:
A random station will be selected to be inserted into
the solution.

Another type of operator used in the TS is removal
operators. These operators help to refine the solution and
reduce the cost by removing undesirable stations. More
specifically, they evaluate stations to see if the savings
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on the construction cost is greater than the lost sales they
might cause. Removal operators include:
• Smart Removal:

A utilization value is calculated for each constructed
station. The utilization value is equal to the number
of used batteries divided by the total number of
batteries at that station. In other words, utilization
of a station shows what percentage of the available
resources within the station is utilized over time.
Smart removal strategy eliminates the station with
the least utilization value.

• Random Removal:
A random station will be removed from the solution.

Hybrid operators, that combine both the insertion and
removal strategies, are developed as well. The first
operator is the Swap Operator. The swap operator
randomly selects a station (C1) to be removed from the
solution. Then, among all stations that are reachable by
the removed station C1, one is randomly selected to be
inserted to the solution. Similarly and for improving the
coverage area of the network, a Broading Operator is
developed to choose two stations to be inserted instead
of one station.
So far, all the introduced operators are meant to change
the selection of stations. There are two other operators
that can change the type of the selected stations:
Upgrade and Downgrade. These operators change the
type of station to include more batteries (Upgrade) or
less batteries (downgrade). Finally, it is worth noting
that a station is only operational when a UAV passes
through; otherwise, the station will not be functioning.

C. Objective Function Evaluation

The objective function of the problem consists of three
terms. The first and second terms are associated with
the construction and operating costs. Since the unit
cost parameters are deterministic, they can be calculated
based on the solution. On the other hand, the third
term, which is associated with the lost sales, cannot be
calculated directly. The problem that arises is that we
need to calculate the maximum flow possible between
all suppliers and demand points via the constructed
network. The solution of the maximum flow problem
will determine the demand magnitude that the network
is capable of satisfying. Therefore, lost sales can be
calculated by deducting the solution of the maximum
flow problem from the total demand.
In order to develop a network, the two key components,
nodes and arcs, should be defined. All the locations
including demand locations, suppliers and selected BSS
are considered as nodes. In order to calculate the maxi-
mum flow of the constructed network, We have to add a

MainSupplier (MS) node as well as MainDemand (MD)
node. MS is connected to all of the suppliers, while all
the demand locations are connected to MD. With respect
to the arcs, we define set A as the set of all the arcs. The
arcs have no capacity except for those that are connecting
the demand locations to MD. The capacity of those arcs
are equal to the demand of the corresponding demand
locations.
Using the described network, we need to solve a max-
imum flow problem via CPLEX repeatedly. At each
iteration, the maximum flow problem is solved and given
the obtained solution; we can determine the satisfied
demand points. Then, we update the demand status,
which means the amount of satisfied demand reduces the
capacity of those arcs that connect the demand locations
to MD. This procedure repeats for the next time slot. The
procedure is explained in more detail for the following
network:
The network as shown in Figure 4a consists of two

suppliers (S1, S2), three BSS (C1, C2, and C3) and
two customers (D1, D2). We are planning for two time
slots and each BSS has two batteries in each time slot.
D1 and D2 demands are equal to 4 and 8 respectively.
The current structure of the network does not allow us
to solve the maximum flow problem. First, there is a
capacity on the nodes, and second, we do not have
source-sink nodes. As a result, we need to transform
the network to the network in Figure 4b. There are
three steps for the transformation. First, adding the nodes
mentioned above, MD and MS. Then, we break each BSS
node into two nodes (Start, End), connected with an arc,
in order to eliminate the capacities on the node. The
arc between the two nodes has a capacity equal to the
number of batteries at the BSS. Finally, we need to limit
the capacity of arcs going into MD from each demand
point. This ensures not delivering more than what is
required to each demand point. Blue arcs in figure 4b
are the capacitated arcs. Now, we solve the maximum
flow problem for the first time slot. Figure 4c illustrates
the flow on the transformed network. In this solution,
4 and 2 units of demand at D1 and D2 are satisfied.
Therefore, we change the capacity of (D1-MD) arc to
zero and (D2 - MD) arc to 6. In the second iteration, 4
units delivered to D2, 6 in total. So there is 2 unit of lost
sale associated with D2. Note that the capacity of (D1-
MD) is zero in the second iteration since we satisfied all
the demands in the previous iteration.
By executing this procedure in all the time slots, not
only the exact value of lost sales is obtained, but also
the stations that are operating within each time slot
are identified. Hence the exact value of the objective
function can be calculated.
We discuss the NP-hardness of the problem in the
following. The capacitated fixed charge network design
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(d) Second Iteration Solution

Figure 4: An example of different steps of calculating the lost sale for a network.

problem (CFCNDP) is a well known NP-hard problem
[38]. Here is the definition for a general CFCNDP
problem. A given network consists of (N,A). Each arc
(ai j ∈ A) has a fixed charge ( fi j), a variable charge (ci j)
and a capacity (ui j). The problem is to minimize the
cost of flow in the network to satisfy the demand. The
formulation of the CFCNDP problem is:

Z = min ∑
(i, j)∈A

ci jxi j + ∑
(i, j)∈A

fi jyi j (14)

Subject To:

∑
(i, j)∈A

xi j− ∑
( j,i)∈A

x ji =

 d if i = O(k),
−d if i = D(k),
0 Otherwise

(15)

0≤ xi j ≤ ui jyi j, ∀(i, j) ∈ A (16)
yi j ∈ {0,1}, ∀(i, j) ∈ A (17)

O(K) represents the set of depots and D(K) represents
the set of demand locations. This problem can be reduced
to our problem with the following transformation steps:

• Each arc transforms to a BSS station (i j) with a
construction cost of fi j, operational cost of ci j and
battery capacity of ui j.

• BSS station (i j) is reachable from all adjacent nodes
of node i and node j.

• All nodes with a negative demand act as demand
node and the ones with positive demand as supplier.

• The cost of lost sales is equal to zero.
In figure 5, it is shown how to reduces CFCNDP

problem into a BSS in our research problem. Each new
arc in figure 5b has unlimited capacity and zero cost
associated with it. This transformation can happen in an
O(|A|) which is polynomial. Now that we have illustrated
how a general form of CFCNDP can be reduced to
our research problem, it can be said that if there is
an algorithm that solves our problem to optimality, it
would also solve the CFCNDP to optimality by using the
reverse of the transformation (i.e. Each constructed BSS
in the solution is equivalent to use of the corresponding
arc in CFCNDP). This proves that our problem is NP-
Hard.

D. Initialization

In this step, a feasible solution is identified for the
problem. Although we can start with no selected station,
this is not a valid initialization state because, given the
defined operators, the algorithm is not capable of adding
multiple numbers of stations in one iteration. Therefore,
no product can be delivered to the demand locations,
which in turn increases the objective function value. As
a result, the algorithm will find the initial solution (i.e.,
no stations) more attractive than adding a station to the
solution. Therefore it is necessary for an initial solution
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Figure 5: Transformation of each arc in the fixed charge network design problem to our research problem.

to contain a network of BSS to cover all the demand
locations. In order to obtain such a network, first, the
farthest demand location to the depot is selected. Then,
using a dynamic programming approach, a chain of
connected BSS is constructed to which the farthest
demand location is connected. In the next step, the next
farthest unconnected demand location to the network is
selected. This process will continue until we obtain a
connected network that covers all the demand locations.
In the following, we explain the dynamic programming
procedure to find a connected route between two nodes.
In order to find a route between two nodes (S, M), start
from one node (S) and using equations 18 and 19 find
the route with the highest value. RS is all the demand
locations that are reachable from node S. R is the set of
all demand locations covered by a node on the route.
NS is the set of all nodes adjacent to Node S. vi is
the demand value of demand location i and diS is the
distance between i and S.

VM(S,R) =


D, if S = M
FS(RS,R)
+MaxS′∈NS

VM(S
′
,R∪RS), O.W

(18)
where:

FS(RS,R) = ∑
i∈RS/R

vi + ∑
i∈RS∩R

0.5∗vi + ∑
i∈R′S/R

vi/diS (19)

Equation 18 is the recursive function to find the best-
connected chain of stations from node S to node M.
Equation 19 is the value function. This function consists
of three terms. The first term (i.e., covering demand
term) is equal to the summation of all the demand nodes
that are not covered by the route yet. This term ensures
that among the adjacent stations to S, one becomes
selected that is able to cover the demand nodes that
are not already covered by the network. In other words,
a route that covers most of the demand nodes will be
created. The second term (i.e., back up station term) is a
partial value for the covered demand. It favors a station
that is closest to a covered demand area. Although other
stations already cover these demand nodes, the second
term ensures that when the magnitude of demands is
significant, the obtained network has several stations

covering the area. The last term (i.e., direction term)
gives a higher score to the stations that are closer to the
uncovered demand. As the distance of station S from
demand node i becomes smaller, the term vi/diS becomes
larger.

In Figure 6, the route is at node (M) (green node)
and now it should select among S1 (red node) and S2
(blue node). The dashed circles show the coverage of
each node. Orange rectangles are demand points in the
network. The demand node with a value of 2 is already
covered by the network. Now we compare S1 and S2 in
terms of the value function. The covering demand term
for S2 is higher than S1 as it covers a demand point with
the magnitude of 6. On the other hand, the backup station
term for S2 is equal to zero while S1 covers the demand
that is already covered by M. Finally, comparing S1 and
S2, S1 is closer to the demand node with the value of 11.
Therefore, the value function returns S1 as the selected
station for the next step. Another obstacle of using
dynamic programming for finding an initial solution is
the curse of dimensionality. It means when the two
nodes, that are considered for finding a route between
them, are distant from each other, the computational
time of calculating the best route grows exponentially. In
order to overcome this issue, we break down the routes
that are longer than ten times of the UAV flying range.
Figure 7 represents an initial solution example for the
TS using dynamic programming. The grid is the planning
area and each intersection represents a candidate location
for a BSS. Red circles on the left represent the location of
the demand points while the number inside them indicate
the magnitude of demand. The black circles on the right
are the output of dynamic programming. Each circle
shows the location of BSS on the grid. The first digit
inside the circle is the ID of the BSS while the second
digit indicates the type of BSS.

E. Tabu Search steps

A brief description of the developed Tabu search is as
follows:

• Step 1. Initialization
This steps obtains the initial solution of the Tabu
search using the dynamic programming discussed
above.
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Figure 6: Illustration of the value function of dynamic programming

• Step 2. Creating Neighborhood Solutions
Using the defined operators, we generate a list
of solutions that are immediate neighbors of the
current solution. In order to calculate the objective
function value for each solution, we have to solve
the maximum flow problem in each time slot. This
would determine the demand magnitude that can be
satisfied during each time slot.

• Step 3. Finding the Best Neighbors
A solution with the minimum objective function
value, which is not forbidden by the Tabu list, is
chosen to be the next solution. There are two types
of Tabu lists. The first one avoids adding a recently
removed station and the second one does not allow
to remove a recently added station. Note that if
any of the solutions are better than what the TS
has identified so far, the algorithm will pick up the
solution regardless of the Tabu lists.

• Step 4. Update the tabu lists and Termination
The Tabu lists are updated accordingly. If the algo-
rithm reaches a predetermined number of iterations,
the process terminates and the best solution will be
reported. Otherwise, we repeat steps 2 and 3.

VII. COMPUTATIONAL STUDY

In this section, numerical tests are conducted for
the proposed model. We present the characteristics of
instances followed by a discussion on the computational
results.

A. Characteristics of Instances

There are four different parameters for each instance:
area of coverage, number of demand locations,
magnitude of demand at each location, and number of
available time slots. The instances are categorized into
three different groups based on the number of demand
points and BSS locations. Size of the region has a direct
impact on the number of BSS candidates, while the
number of demand locations impacts the complexity of
the BSS network. The following table shows how the
instances are categorized.
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Figure 7: Example of an initial solution for Tabu Search

Table II: Characteristics of instances

Scenario Distribution
Number of low demand nodes (L) Uniform(5, 15)
Number of high demand nodes (H) Uniform(15,20)

Small region side length (S) Uniform(20,30)
Medium region side length (M) Uniform(50,60)
Large region side length (LA) Uniform(80,90)

Demand size at each node Uniform(1, 15)

For each category, the number of demand locations
is generated based on a Uniform distribution function.
Each location is randomly placed throughout the region.
Also, BSS candidates are generated using a grid created
in the region. Each square inside the grid has a side
length equal to the UAV flying distance. Each BSS
Candidate is located at the intersection of the grid.
These instances contain four types of BSS with different
attributes (Table III). Only one depot is considered and
the penalty cost associated with the lost sales is 50,000.
The reason for using a sizeable lost sale value is to justify
the high cost of constructing a path from a depot to a
customer.
In addition to the parameters mentioned above, we utilize
the cost figures presented in table III. There is limited
information available about the cost of constructing a
new BSS; however, based on our research, the smallest
stations cost at least 20,000 dollars. We estimate the cost
figures for type B through D based on the assumption
that number of batteries is the cost driver with economy

of scale for larger stations. The same rule applies to the
operational cost because as stations become larger it is
more costly to recharge its batteries.

In total, 300 instances are generated and solved using
the developed TS and CPLEX. There is a 60-minute time
limit for the CPLEX algorithm. This time limit allows
us only to solve 46% of the instances optimally, which
is sufficient to evaluate the performance of the TS. We
run the TS for the following number of iterations: 100,
200, 500 and 1000. An ANOVA test at 5% significance
level shows that there is a significant difference between
the results of different iterations. The Tukey HSD test
confirms that the results of 1000 iterations out-perform
others.
The solution methodologies discussed here are coded in
JAVA and executed on Intel Core-i7 3.6 Mhz, 16 GB
RAM under Windows operating system.

B. Results

The results are represented in Table IV. The first
column indicates the category of instances based on
their characteristics. For example LS1 is a low demand
scenario in a small region with one time slot. Thirty cat-
egories of instances, with 10 instances in each category,
adds up to 300 instances.
It is apparent that by growing the complexity of the

instances, the performance of TS with regards to the
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Table III: BSS attributes

BSS Attributes
Construction Cost Operational Cost Number of Batteries UAV Usage

BSS Type
A $20000 $10 10 5
B $30000 $20 20 10
C $35000 $40 30 15
D $40000 $80 50 25

Table IV: Tabu search results for 300 instances

CPLEX Tabu Search
Time (s) # Optimal Gap Time (s) CPLEX Solution Gap Out Perform CPLEX

LS1 1.35 10 0% 0.11 6% 0
LS2 18.03 10 0% 3.03 2% 0
LS3 1093.72 7 2% 217.70 10% 0
LS4 798.72 8 0% 31.49 10% 0
LS5 2973.77 2 36% 182.34 10% 0
LM1 388.52 9 0% 29.64 18% 0
LM2 2966.88 2 5% 555.50 10% 2
LM3 3600.12 0 39% 622.01 16% 1
LM4 3600.31 0 67% 28.52 8% 1
LM5 3600.17 0 87% 602.92 9% 0
LLA1 3140.88 1 4% 35.14 11% 2
LLA2 3600.35 0 32% 224.52 10% 1
LLA3 3600.27 0 62% 90.66 9% 4
LLA4 3600.29 0 78% 451.99 12% 0
LLA5 3600.29 0 92% 86.40 10% 2
HS1 0.02 10 0% 0.00 10% 0
HS2 0.06 10 0% 0.01 1% 0
HS3 13.80 10 0% 2.42 9% 0
HS4 464.89 10 0% 73.49 10% 0
HS5 547.87 8 0% 83.62 3% 0
HM1 0.33 10 0% 0.06 8% 0
HM2 160.39 9 0% 131.20 10% 0
HM3 864.13 8 0% 97.39 22% 0
HM4 2731.11 2 1% 268.51 8% 1
HM5 3150.97 1 4% 622.98 8% 3
HLA1 221.31 9 0% 179.10 10% 0
HLA2 2650.51 3 2% 411.67 6% 0
HLA3 3346.79 0 6% 326.74 11% 2
HLA4 3600.32 0 19% 387.56 11% 1
HLA5 3600.27 0 22% 397.76 9% 4

objective function value improves. In the small region
instances, TS cannot outperform the CPLEX because it
is trivial for CPLEX find the optimal network. However,

as the region size increases to medium and large, TS
outperforms the CPLEX more frequently. The reason is
that, while CPLEX struggles to find an initial solution,
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TS is able to construct a base network using the dynamic
programming initialization, regardless of the size of the
region. Among the other benefits of using TS is the
consistency with the running time. The average running
time for TS is about three minutes, while CPLEX uses
32 minutes on average. Table V summarizes the result
of the 300 instances based on the region size.

Figure 8 is an example of the final solution of TS for
4 time slots. Figure 7 shows the initial solution of this
instance. Each black arc in Figure 8 indicates the flow
between two BSS, while red arcs indicate the delivery to
customers. The number on each arc is the total number
of UAV trips. In each period, the depot will serve the
nearest customer until one of the BSS runs out of battery,
in which case it waits until the next period for making
new deliveries.
In this part, we provide a detailed analysis on the impact
of dynamic programming as the method of generating
initial solutions for the Tabu search. Fifteen instances
are created based on LS1, LM1, and LLA1.

Table ?? shows that dynamic programming on average
accounts for 9% of the TS running time. Also, TS on
average improves the result of dynamic programming
initial solution by 29%. Still, TS solutions are on average
8% worse than CPLEX solutions but 69% faster.
Lastly, we select five instances where the best solutions
are obtained by CPLEX (C Instances) and 5 instances
where CPLEX is out-performed by TS (T S Instances)
(Instances selected among 300 instances presented in
table IV). These ten instances are solved by CPLEX
twice. In the first round, the initial solution that is pro-
vided to CPLEX is the final solution obtained from TS.
C Instances solutions did not show any improvement
and in one case leads to a worse solution. Regarding
the T S Instances, 3 out of 5 instances are improved in
comparison to the current best solution. The reduction in
the optimality gap is on average 3.18%. The second time,
CPLEX solves the instances where the initial solutions
are obtained from dynamic programming. In those cases,
no impact on the CPLEX solution is observed.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we focus on locating battery swap sta-
tions for UAVs that transport commodities from suppliers
to customers. The problem is designing a network of
battery swap stations with a limited number of batteries
in order to enhance the flying range of UAVs. The
customer demands are assumed to be uncertain while a
penalty cost is considered for lost sales. We developed a
scenario-based stochastic programming model to satisfy
the customer demand across the planning area. The pro-
posed model allows constructing different types of BSS
with different costs and battery capacities. To address the
computational complexity of this problem, a Tabu search

heuristic is developed as the solution methodology. The
initial solution is generated using dynamic programming.
Numerous numerical tests are conducted to illustrate
the model and discuss the solution methodology. The
results show that, compared with CPLEX, TS generates
significant improvements in the running time and quality
of solutions, especially for large problems.

As a future work, other solution approaches can be
explored to solve the stochastic programming model with
a larger number of scenarios. Adding the time dimension
to the problem is also a significant extension that would
allow constructing battery swap stations over time.
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Table V: Summary of results of 300 instances based on the region size.

Small Medium Large
CPLEX Gap (%) 4% 20% 32%

TS and CPLEX Gap (%) 7% 12% 10%
# of Instances TS out performs

CPLEX 0 8 16

# of Optimal solutions by
CPLEX 85 41 13

Average CPLEX running time (s) 591.22 2106.29 3096.13
Average TS running time (s) 59.42 283.36 259.15

Figure 8: Final Solution from Tabu Search for an instance
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