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Abstract—This paper presents an enriched variation 
of the original Vehicle Routing Problem (VRP), in 
which traffic zones, CO2 emissions and heterogeneity 
of vehicles are all taken into consideration. Despite 
the extensive research already focused at VRP, its 
applicability in Supply Chain Management, has 
pushed researchers in investigating richer, and more 
realistic versions of VRP with various business 
constraints.  The objective of the model is to minimize 
the total travelled distance, while assigning specific 
customers to specific type of vehicles and maintaining 
the emissions of the entire fleet under a specified 
limit. The proposed hybrid algorithm (TDHF-GVRP) 
is composed of two nested genetic algorithms, 
interacting with each other as well as with other local 
search optimization methods. The external genetic 
algorithm (parent) is responsible for the assignment 
of customers to vehicle types, whereas the internal 
(child) algorithm is responsible for solving the vehicle 
routing problem for each category of vehicles 
separately. 
Keywords—Rich VRP, Vehicle Routing Problem, Hybrid 
Algorithm, Meta-heuristic, Green Transportation, 
Sustainable Transportation, Heterogeneous Fleet  

1. Introduction 

Increased demand variability between the discrete 
tiers of a supply chain is perhaps the most 
significant criterion for strategic supply chain 
decisions, for example facility location and supply 
chain network design, as it directly affects the 
efficient operation of the whole supply chain, 
especially transportation [1].  Some authors record 
the first instance of the VRP problem in literature 
back in 1954, in the efforts of to provide a solution 
of a large-scale Travelling Salesman Problem 
(TSP), since the TSP is considered a specific case 
of the generic vehicle routing problem [2]. Others 
move this date five years forward to when the 
seminal paper by [3] was published, calculating the 
optimum routing of a fleet of identical gasoline 

delivery trucks between a bulk terminal and a large 
number of service stations supplied by the terminal 
[4]. Since then and after the introduction of the 
term ‘vehicle routing’ by [5], VRP has been a very 
popular, amongst researchers, scientific area 
something which is translated in an abundance of 
publications that can roughly be divided into 
theoretical papers providing mathematical 
formulations and exact or approximate solution 
methods for academic problems and case-oriented 
papers [6]. 

VRP is an NP-Hard combinatorial optimization 
problem. For decades authors proposed solutions of 
manageable scale problems using exact algorithms 
[7], [8], [9], [10], [11] and heuristic algorithms 
[12], [13], [14], [15]. Still, the tight connection of 
the VRP with real life applications and the inherent 
complexity of the actual business cases created, 
early enough, the need for the introduction of a 
large number of the problem’s variants, driving 
research away from the simplistic nature of the 
generic vehicle routing problem towards more 
realistic models and problem constraints. 

It was the 90’s that marked a significant increase 
in VRP research. The advent of the 
microcomputers and the vast spread of computing 
power availability in research institutions and the 
industry, created a new wave of scientific 
publications focusing in more complex, realistic 
and tractable algorithmic approaches of real-life 
business problems. During this era the term meta-
heuristics was introduced to define a number of 
search algorithms for solving these VRPs as well as 
other combinatorial optimization problems [16]. 
The introduction of meta-heuristics in the research 
agenda of the vehicle routing problem created a 
new wave of algorithmic approaches addressing 
more complex and dynamic business situations 
utilizing field data and information. At the same 
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time, a number of conveniently overlooked real life 
constraints started to gain meaning and interest, 
thus enhancing the proposed model’s and 
mathematical formulations’ validity leading to the 
development of a wide array of VRP variants. 
Several literature review and taxonomical efforts 
exist in the literature identifying, providing 
definitions and exploring these VRP variations. 
The underlying logic and structure of these 
taxonomies vary. For example, the taxonomy 
proposed by [4] is based on the nature of the 
problem and application of VRP, while the 
taxonomy proposed [6] utilizes central routing 
concepts present in industrial applications in order 
to produce a meaningful VRP variant 
categorization. One has to note, the most influential 
work by the authors of [16] who classify 
contributions based on five different aspects, i.e. 
type of study, scenario characteristics, problem 
physical characteristics, information characteristics 
and data characteristics. 

This paper presents a new variation of the 
traditional CVRP, in which traffic congestion is 
taken into account (TDVRP), customers are served 
by a heterogeneous fleet of vehicles with various 
capacities (HFVRP) and environmental pollution 
(GVRP) is included in the model’s mathematical 
formulation. The objective of the proposed TDHF-
GVRP algorithm is to minimize the total travelled 
distance, while assigning specific customers to 
specific type of vehicles and maintaining the 
emissions of the entire fleet under a specified limit. 
In that sense, the proposed problem can be 
considered a Rich Vehicle Routing Problem as 
argumentation in the next section will show.  

The remainder of this paper is organized as 
follows. Section 2 briefly explores current 
definitions of the ‘Rich VRP’ problem in order to 
provide adequate justification for including this 
paper under the ‘Rich VRP’ category. Section 3 
details the proposed hybrid meta-heuristic 
algorithm. Finally, Section 4 provides the 
conclusions to this work and outlines further 
research orientation and goal setting. 

2. Literature Review 

The proposed problem in this paper, utilizes elements 
from three major VRP variants as these can be found 

in the taxonomic efforts in literature, i.e. the Time 
Dependent VRP (TDVRP), the Heterogeneous Fleet 
VRP (HFVRP) and the Green VRP (GVRP).  TDVRP 
assumes that the travel times between depots and 
customers are deterministic but not constant. Instead 
they are a function of current time and as such, the 
effects of congestion on the total route duration can be 
determined [17], while making these problems harder 
to model and solve. The first instance of TDVRP in 
literature can be found in the initial PhD [18] and the 
subsequent paper in [19], which addresses both the 
TDVRP and the TDTSP. Since then, many 
researchers have proposed metaheuristics to address 
the TDVRP problem most of the times in combination 
with setting soft or hard time windows in servicing the 
nodes of the network [20], [21], [22], [23], [24]. For 
pure TDVRP heuristics research, the reader can refer 
to the work in [25], which proposes a parallel tabu 
search heuristic for improving results in comparison 
with a fixed travel time model. The HFVRP is NP-
hard as a generalization of the classical Vehicle 
Routing Problem in which customers are served by a 
heterogeneous fleet of vehicles with various 
capacities, fixed costs, and variable costs [26]. The 
HFVRP is a very important problem, since fleets are 
likely to be heterogeneous in most practical situations, 
even when at the time of the fleet acquisition the 
initial fleet vehicles were identical. Moreover, 
insurance, maintenance and operating costs may have 
different values based on the level of depreciation or 
usage time of the fleet [27].  A relatively recent 
review of HFVRP can be found in [28]. Finally, the 
GVRP refers to vehicle routing problems where 
externalities of using vehicles, such as carbon dioxide-
equivalents emissions, are explicitly taken into 
account so that they are reduced through better 
planning [29]. According to the authors, existing 
GVRP studies only cover vehicle capacity and time 
windows constraints, while at the same time 
heterogeneous vehicles are still not explored in the 
existing literature.  

Table 1, provides brief information (name and 
acronym, definition, description, indicative 
references) on VRP variants relative to the research 
efforts described in this paper, i.e. CVRP, TDVRP, 
HFVRP and GVRP. The PRP, VRPTW and OVRP 
problems are also included in this Table since they all 
constitute possible extensions of our proposed 
algorithm and items of the authors’ future research 
agenda. 
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Table 1. Variants of the VRP  

VRP Variant Description Indicative References 

Capacitated 
Vehicle Routing 
Problem (CVRP) 

It is the simplest form of a VRP problem where a 
homogeneous fleet of vehicles supplies customers 
from a depot. Each vehicle has the same capacity 
(homogeneous fleet) and each customer has a certain 
demand that must be satisfied. Additionally, there is a 
cost matrix that measures the costs associated with 
moving a vehicle from one node to another [9]. 

Dantzig & Ramser, 1959 [16]; 
Osman, M.F.S [30]; Sahroni et 
al., 2018 [31]; Chen et al., 
2010 [32]. 

Time Dependent 
Vehicle Routing 
Problem 
(TDVRP) 

The TDVRP assumes that the travel times between 
depots and customers are deterministic but not 
constant. Instead they are a function of current time 
and as such, the effects of congestion on the total 
route duration can be determined [7]. 

Malandraki & Daskin, 1992 
[19]; Ichoua et al., 2003 [25]; 
Jabali et al., 2012 [33]; Kuo & 
Wang, 2012 [34]; Lorini et al., 
2011 [35]. 

Heterogeneous 
Fleet Vehicle 
Routing Problem 
(HFVRP) 

It is a variant of the classical Vehicle Routing 
Problem in which customers are served by a 
heterogeneous fleet of vehicles with various 
capacities, fixed costs, and variable costs [29]. 

Baldacci et al., 2008 [36]; 
Jiang et al., 2014 [37]; 
Subramanian et al., 2012 [38]; 
Penna et al., 2013 [39]. 

   

Green Vehicle 
Routing Problem 
(GVRP) 

Green Vehicle Routing problems are characterized by 
the objective of harmonizing the environmental and 
economic costs by implementing effective routes to 
meet the environmental concerns and financial 
indexes of the problem at hand [54]. 

Erdoğan & Miller-Hooks, 
2012 [40]; Demir et al., 2014 
[41]; Park & Chae, 2014 [42]; 
Bektas et al., 2016 [29]. 

   

Pollution Routing 
Problem (PRP) 

It is in essence an extension of the VRPTW problem. 
The PRP routes a number of vehicles to serve a set of 
customers within preset time windows, and 
determining their speed on each route segment, so as 
to minimize a function comprising emissions and 
driver costs [28]. 

Demir et al., 2012 [43]; 
Bektaş & Laporte, 2011 [44]; 
Kramer et al., 2015 [45]; 
Kumar et al., 2016 [46]. 

   

Vehicle Routing 
Problem with 
Time Windows 
(VRPTW) 

A generalization of the VRP where the service at any 
customer starts within a given time interval, called a 
time window. Time windows are called soft when 
they can be considered non-binding for a penalty 
cost. They are hard when they cannot be violated 
[44]. 

Chiang & Russell, 1996 [47]; 
Gayialis et al., 2018 [48]; 
Bräysy & Gendreau, 2005 
[49]; Ponis et al., 2015 [50]; 
Baldacci et al., 2012 [51]. 

   

Open VRP 
(OVRP) 

The open vehicle routing problem (OVRP) differs 
from the classic vehicle routing problem (VRP) 
because the vehicles either are not required to return 
to the depot, or they have to return by revisiting the 
customers assigned to them in the reverse order [66]. 

Li et al., 2005 [52]; Li et al., 
2007 [53]; Li et al., 2012 [54]; 
Repoussis et al., 2007 [55];  

VRP research has often been criticized for 
being too focused on idealized models with little or 
no practical application, because of the use of non-
realistic assumptions [56].  In recent years, 
methodological progress and the development and 

vast availability of computer power and 
infrastructures, has led to the emergence of 
numerous research studies addressing more 
complex VRP variants introducing new, and closer 
to real life applications, constraints and objectives. 
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These problems can be found in literature under the 
general definition of the so called ‘Rich Vehicle 
Routing Problems’, or in brief ‘RVRP’.  

There are numerous research papers addressing 
the Rich VRP, still to our knowledge, there is no 
single and unified definition of what this family of 
problems entails. According to [57], RVRPs are the 
ones that capture the high complexities, large data 
sizes, uncertainties and dynamisms that exist in real 
life. Ref. [58] define RVRPs as problems, which 
deal with realistic optimization functions along 
with a wide variety of real-life constraints related to 
time and distance factors. What seems to be the 
most recent and elaborated definition of the RVRPs 
can be found in [6]. The authors create a taxonomy 
of RVRPs based on publications from 2006 to 2015 
and according to their findings, propose a more 
precise and strict definition of the RVRP, based on 
the specific characteristics and categorization 
criteria of their taxonomy. Still, the same authors 
agree that in literature the “RVRP is defined as a 
problem which simultaneously includes several 
types of challenging and complicated features 
associated with the complexity of real-life routing 
problems”. 

As stated earlier, recent literature presents a 
substantial number of publications in the RVRP 
area, especially those utilizing metaheuristics, 
drifting away from specialized and traditional 
heuristic algorithms, which were used for decades 
in solving complex combinatorial optimization 
problems [59]. Today, thirty years after their initial 
introduction, metaheuristics have proved to be 
remarkably effective, and for that metaheuristics 
are now widely considered the most appropriate 
methods to address the combinatorial nature, the 
complexity and variety of rich vehicle routing 
problems [60]. According to [61], metaheuristics 
are “solution methods that orchestrate an 
interaction between local improvement procedures 
and higher-level strategies to create a process 
capable of escaping from local optima and 
performing a robust search of a solution space”. 
While metaheuristics are not able to certify the 
optimality of the solutions they find, they have 
proved themselves capable of providing better 
results than exact solution procedures, especially in 
real world problems of high complexity [62]. For a 
survey of metaheuristics for RVRPs, the reader 
could refer to [63]. 

3. Methodology 
 

3.1 Problem Definition and 
Formulation 

The TDHF-GVRP problem is defined in a 
complete direct network G (N, A), where N is the 
set of nodes and A= {(i,j):i≠j,i,j E N}  is the set of 
arcs. Node 0 represents the central depot and N’=N 
\ {0} represents the customers. For every arc i-j, 
which represents the path between nodes i and j, Dij 
stands for the distance of the arc. Each customer i 
places a demand Ri, which has to be serviced by 
exactly one vehicle. The scheduling period is set to 
one day and is divided in m time periods, so that 
the traffic speed in a specific arc during a time 
period is fixed, but may be different between two 
time periods. Every time period k belongs in the set 
of K periods and is characterized by its beginning 
time bk and its end time ek.  

The average speed for a specific route depends 
both on the period k that the route is scheduled for 
and the different traffic zones, which form the final 
route. Every i-j route is divided in B smaller routes, 
defined by B+1 points (incl. i,j), in a way that every 
small route (i= p0,p1),(p1,p2),(p2, p3)…(pΒ-1,j=pB) 
belongs in exactly one traffic zone, and 
subsequently has the same average speed for a 
specific time period k (see Figure 1). The traffic 
zones affect the average speed of vehicles in the 
zone (V(zik) , i=1……B and k=1…..m) in the sense 
that the average speed is fixed within a sub route 
for a given time period. 

The TDHF-GVRP problem considers a set of H 
heterogeneous vehicles, consisting of H1 low 
capacity vehicles and H2 high capacity vehicles. 
The vehicles are visiting a set of n customers, each 
with a known and non-variable demand, randomly 
located in a region.  All vehicles start their route 
from a central depot and end it at the same central 
depot. Each vehicle type has its own capacity Ch, 
load time tload, and unload time tunload. The load and 
unload times correspond to full truck loads (FTL). 
In the case of less than truckload (LTL) 
assignments, load and unload times are linearly 
reduced.  

For calculating the emissions of the vehicles, the 
model described in [64] is utilized.  Since the 
model mandates a steady vehicle speed, the total 
emissions of the route are calculated as the sum of 
the emissions for every steady-speed smaller route 
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that the original route was divided into. The 
company, except the proprietary fleet of vehicles 
(set H) has the potential to assign routing tasks to 
an external 3PL service provider. The additional 
cost of subcontracting is Cs per measure of 
distance, when compared to the cost of using its 
own vehicles. The purpose of the problem is to 
minimize the total weighted travelled distance, 
while the emissions remain below a specified limit. 

The distance travelled by the company’s own 
vehicles has been assigned with a weight value of 
one (1), whereas the subcontracted vehicles have 
been assigned a weight value of Cs, which 
represents the additional cost per unit of measure. 
The Cs may receive any positive value, but is 
typically above one. 

 

 
Figure 1. Route (i,j) Segmentation in sub routes 

The mathematical formulation of the problem is 
based on the recent works of [65]. The decision 
variables of the problem are the following: 

Primary Decision Variables 

Xij: Binary variable = {1, if ij route is travelled, 
otherwise 0} 

Yijh: Binary variable = {1 ij route is travelled by 
vehicle h, otherwise 0} 

Xijkh: Binary variable = {1 ij route is travelled by 
vehicle h in period k, otherwise 0} 

Secondary Decision Variables (bound to the 
primary decision variables) 

dijkh : Continuous variable that depicts the travelled 
distance in the ij route, travelled by vehicle h at 
period k.  

τijkh : Continuous variable that depicts the travel 
time of the dijkh route. 

li : Continuous variable that depicts the departure 
time from node i.  

ai : Continuous variable that depicts the arrival time 
to node i. 
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The constraint in eq.2 ensures that only one 
vehicle departs from each customer node, while 
eq.3 ensures that only one vehicle reaches each 
customer node. Eq.4 states that each arc, if chosen, 
has to be travelled by only one vehicle. Eq.5 forces 
the sum of routings, for every vehicle, to be greater 
than the sum of routings of that vehicle for one 
time period. Eq.6 forces the sum of routings, for 
every vehicle, to be less than the sum of routings 
for all time periods of that vehicle. Eq.5 and Eq.6 
collectively, ensure that Yijh is consistent with Xijkh. 
Eq.7 forces every vehicle to exit a node the same 
number of times it entered it. Eq.8 ensures that 
every vehicle leaves the central depot one time at 
most, and cannot be reused after it returns there. 
Eq.9 forces the continuous variable dijkh to be less 
than the total distance of route ij. If Xijkh is 0 then 
dijkh also needs to be 0, but if Xijkh is 1, then dijk has 
to be equal or less than Dij. Eq.10 states that if an 
arc is chosen (Xij=1) then the entire distance Dij has 
to be travelled, which means that the continuous 
variable dijkh for every period and every vehicle has 
to be equal to the distance of the arc ij. If the arc is 
not chosen, then dijkh for every period and vehicle 
has to be equal to 0.  Eq.11 ensures that the travel 
time of an arc ij, travelled by any vehicle is less 

than the difference between its start and end period, 
which in turn forces the travel time to be less than 
the duration of the time period. Eq.12 ensures that 
if an arc is chosen in the period k by the vehicle h, 
the departure time from the node i has to be before 
the end time of the period minus the time it takes to 
travel the arc ij. Eq.13 states that if an arc is 
travelled in period k by the vehicle h, then the 
arrival time in node j has to be more than the sum 
of the arrival time and the time it takes to travel the 
arc ij. Eq.14 ensures that if an arc is chosen, the 
arrival time at a node j has to exceed the sum of the 
departure time and the travel time of the arc. For 
eq.12, eq.13 and eq.14, if the arc is not chosen, the 
constraint is automatically satisfied due to the large 
number M used in the equation. Eq.15 calculates 
the service time of each customer as a function of 
the customer’s demand and the vehicle’s unload 
time and capacity. Eq.16 ensures that the departure 
time of any vehicle from node i has to be after its 
arrival and service time from the same node. Eq.17 
states that the arrival period of any vehicle at the 
central depot doesn’t exceed the end time of the 
last time period, since every vehicle has to return to 
the depot to be ready for use the next day. Eq.18 
forces the sum of demands for the customers served 
by a specific vehicle to be less than the capacity of 
that vehicle for every vehicle h. Eq.19 calculates 
the travelled distance dijkh as the sum of each of the 
B-1 smaller arcs, in which the average speed is 
steady. Eq.20 calculates the travel time of the dijkh 
distance. Eq.21 calculates the travel time of a 
smaller arc, as the quotient of the distance of that 
arc and the average speed in that arc (which is 
steady by the definition of the smaller arcs). For 
eq.20 and eq.21 all the units used for the 
calculations are in the appropriate system of units. 
Eq.22 states that the average speed of a vehicle can 
take two possible values, one for peak and one for 
non-peak hours. Eq.23 calculates the emissions for 
an arc ij, using the model developed in [64]. The 
constants a1, a2, a3, a4 depend on the vehicle type. 
Eq.24 calculates the emissions for an arc ij, from a 
vehicle h, during the period k, as the sum of 
emissions for all the smaller arcs that constitute the 
original arc. Eq.25 forces the sum of emissions of 
the entire fleet of vehicles to be below the specified 
limit. Eq.26 forces all vehicles to depart from the 
central depot after the start of the first period and 
their respective load times. 
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3.2 Problem Solution 

The proposed solution method is a hybrid 
algorithm, consisting of two nested genetic 
algorithms and on top of that we use local search 
methods to improve solutions. The external 
(parent) genetic algorithm, which is responsible for 
assigning customers to vehicle types, forwards each 
customer-set, corresponding to a vehicle type, 
separately to the internal (child) genetic algorithm. 
The interior genetic algorithm solves the VRP of 
the given customer-set, and uses local search 
heuristics to improve its solutions. The results of 
the internal genetic algorithm are subsequently 
forwarded into the exterior genetic algorithm, in 
which the objective function of the final solution is 
calculated, the new population is chosen and the 
iterations continue. The problem’s solution process 
is schematically presented in Figure 2. 

3.2.1  Initialization & Solutions Encoding 

The external genetic algorithm receives all the 
related information about the customers, vehicles, 
traffic-zones and time periods. The algorithm 
creates an initial population with a method that 
inserts randomly customers into customer-sets. 
These customer-sets represent the pairing of 
customers to specific vehicle types and are encoded 
as chromosomes for the external genetic algorithm. 

The chromosomes are first imposed to cross-over 
and mutation and then decoded back into customer 
sets. Each customer set, group of customers that 
will be serviced by the same vehicle type, is sent to 
the internal genetic algorithm, and the VRP 
problem for that group of customers now can be 
solved using standard VRP techniques embedded in 
the genetic algorithm. The results of all customer-
sets are sent as feedback to the exterior genetic 
algorithm, in order to evaluate the quality of the 
solution of the problem, as a whole. Based on the 
results, a new population is generated and the 
process continues.  

For the exterior genetic algorithm, each 
chromosome is a vector of length N where N is the 
total number of customers for the problem at hand. 
Each customer receives an identification number 
(unique for each customer). This number indicates 
the position of the customer in the chromosome. 
Each chromosome position can get an integer value 
between 1 and the number of vehicle types, 
indicating which vehicle type has to service each 
customer. For instance, if a customer has id 34, 
position 34 in the chromosome will contain the 
information about the vehicle type that should be 
used to make the delivery to that customer. Usually 
ids correspond to the reading order from the input 
data. To generate the initial population the roulette 
wheel methodology is used [66]. 

 

Figure 2. Solution Process 
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3.2.2  Genetic operators 

The main operators we used in the exterior genetic 
algorithm are Crossover and Swap. After 
conducting an adequate number of tests, we 
observed that a two-point Crossover produced the 
best results. Both operators are shown in Figure 3. 
In the two-point Crossover, chromosomes are 
randomly selected two at a time, and two random 
positions are chosen. The first offspring, which is 
produced, receives the first (before the first 
position) and third part (after the second position) 
from the first chromosome and the middle part 
(between the two positions) from the second 
chromosome, whereas the second offspring 
receives the middle part from the first chromosome 
and the other parts from the second chromosome. 
The Swap operator changes the positions of two 
random chromosome locations, but the rest of the 
chromosome remains the same. Swap acts as a 
mutating operator to offer diversity in the genetic 
population, in order to explore the solution space, 
in search for the optimal solution. 

 

Figure 3. Two-point crossover for the external GA  

3.2.3  Fitness Function 

The fitness value of a given chromosome 
represents the quality of the produced solution. For 
most optimization problems, the fitness function is 
the same as the objective function. In VRP, fitness 
function represents the total travelled distance of 
the entire fleet in the solution. Since the genetic 
algorithm cannot directly satisfy the constraints of 
the problem, we decided to add a penalty function 
to the fitness function. Therefore, each time a 
constraint is violated the solution receives a penalty 
value, depending on the iteration of the algorithm 
and the extent of the violation. Typically, we 
allowed constraint violations in the early stages of 
the algorithm, so that the algorithm can search the 
space of infeasible solutions, as well as offer 
diversity in the population. As the iterations came 
to an end the penalty function increased in 
magnitude, making infeasible solutions less likely 
to participate in the new population for the next 
iteration.   

To calculate the fitness of each chromosome we 
needed to get the results of the interior algorithm 
for that chromosome or in other words for every 
given specific pairing of customers to vehicle types 
(one chromosome from the exterior algorithm) to 
find the optimal routes (final population of the 
interior algorithm for the given input/chromosome) 
and then calculate the total distance and any 
penalties due to violations of the CO2 limit.  

3.2.4  Internal Genetic Algorithm  

The internal Genetic Algorithm receives a specific 
customer set (customers grouped by the vehicle 
type to be used) as input from the exterior genetic 
algorithm, as well as the number of available 
vehicles and their characteristics and solves the 
vehicle routing problem for those customers. The 
algorithm generates an initial set of chromosomes 
with both heuristics, i.e. Sweep [67], Savings [68], 
Moles & Jameson [69] and random generating 
methods. The ratio of heuristic to random generated 
chromosomes is 1 to 5, since diversity of the 
population generally produced better results, while 
experimenting with the algorithm. The main 
operators we used on the chromosomes were 
crossover, mutation and inversion. At the early 
stages of the algorithm, no local search methods 
were used, due to the added computational time 
needed to implement those methods. Moreover, in 
those stages the algorithm did not produce 
solutions close to optimal and it is more important 
for the population to keep its diversity, in order for 
the algorithm not to converge too soon. When the 
algorithm execution was terminated, at least 90% 
of its iterations, local search methods (2-opt) were 
implemented to the existing solutions. Then, the 
final best solution was forwarded to the exterior 
genetic algorithm, and the process continued with 
the next customer set. 

For the interior genetic algorithm, each 
chromosome has as many positions as the number 
of customers in the customer set. Each customer 
has its own unique id number and each 
chromosome consists of a sequence of these 
identification numbers. Since each customer can 
only be visited once, its id number can only appear 
once in the chromosome. Starting from the 
beginning of the chromosome, customers are 
assigned to the first vehicle, according to the 
sequence, as long as the remaining capacity of the 
vehicle can support the addition of the next 



Int. J Sup. Chain. Mgt                            Vol. 9, No. 5, October 2020 

 

1307 

customer. When the remaining capacity of the 
vehicle is not enough for the demand of the next 
customer, the route of that vehicle is complete and 
the process continues for the next vehicle until no 
customers are left. In every vehicle besides the 
customers that have to be serviced in the given 
order, the central depot is added as the first and last 
node of the route. It is important to note that this 
encoding produces only feasible solutions. The 
whole encoding and decoding process is illustrated 
in Figure 4. 

 
Figure 4. The Encoding – Decoding Process 

For the interior genetic algorithm, we used three 
genetic operators: PMX crossover, swap and 
inversion. PMX crossover is a special type of 
crossover, in which parent 1 donates a swath of 
genetic material and the corresponding swath from 
the other parent is sprinkled about in the child. 
Once that is done, the remaining alleles are copied 
direct from parent 2. This type of crossover offers 
better performance in some optimization problems, 
and was picked due to the solution encoding. The 
mutation operator (swap) was used to offer 
diversity in the population, in the same way it was 
used in the exterior genetic algorithm. Inversion is 
another genetic operator that is used only when the 
newly produced solution is better than the previous. 
More specifically, a part of a given chromosome is 
chosen and the order of the genes in it is reversed. 
The inversion is illustrated in Figure 5: 

 
Figure 5. Gene Inversion 

4. Conclusions 

In this paper, we introduced a metaheuristic 
algorithm for a rich VRP problem, addressing the 
issues of fleet heterogeneity and CO2 emissions, 
while at the same time taking into account in its 
solution the often met -in real life cases- option to 
assign parts of the transportation workload to third 

party contractors. The proposed algorithm is using 
a nested set of GAs to effectively decompose this 
complex problem to two simpler ones quickly 
leading to really good quality of results. The first 
one (external) tries to pair customers to vehicle 
types in a pretty much random way letting the 
genetic algorithm to lead the way to relatively good 
solutions. The second one (internal) for each 
pairing goes and solves X (where X the number of 
available vehicle types) simple instances of VRP 
(vehicle type does not affect the internal problem) 
making the most of the known heuristic techniques 
and the characteristics of the evolutionary methods, 
i.e. genetic algorithms.  

The results of applying the proposed algorithm 
in selected VRP benchmark problems provide quite 
competitive results and the application of the 
proposed algorithm in our demonstrative case study 
shows that the proposed algorithm exhibits great 
potential for a wide range of complex practical 
problems. It is within the immediate research plans 
of the authors to further enrich the proposed 
algorithm by introducing the concept of time 
windows, thus expanding its applicability to 
specific PRP and green VRPTW problems. Finally, 
the business case of assigning a number of vehicles 
to a 3PL contractor is partially addressed in this 
paper, since the algorithm works under the 
assignment that all vehicles return to the depot. 
Still, this is not the case in the majority of real life 
cases, which roughly follow the Open VRP 
problem description, where vehicles are not 
required to return to the depot, or they have to 
return by revisiting the customers assigned to them 
in the reverse order. 
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