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Abstract -- This paper takes up the responsiveness and 
recovery performance of a distribution warehouse of a 
supply chain operating under conditions of large lead 
times (lags) for order replenishment, and uncertain 
demand (sudden demand increases). The performance 
metrics for measuring Responsiveness and Recovery 
are defined, and the dynamic performance analysis of 
the warehouse inventory management system under 
different dynamic replenishment control schemes is 
dealt with in detail. And from a comparative 
performance analysis, a good control scheme is 
suggested to enhance responsiveness and recovery. To 
further study the effect of replenishment lag 
specifically, a comparison of the response 
characteristics of some closely related supply chain 
conditions is then presented, which highlights the 
increased difficulty in controlling systems in the 
presence of replenishment lags compared to the others. 
The contributions of this study are threefold: 1) The 
Responsiveness and Recovery Performance Analysis 
of the system, 2) Replenishment System Design for 
enhanced Responsiveness and Recovery, and 3) 
Highlighting of the specific effect of replenishment lag 
on system performance.  
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1. Introduction 
A frequently encountered strategy in supply chain 
(SC) management is that of a Responsive chain, a 
fundamental requirement of which is that it should 
be able to respond quickly to unanticipated changes 
in demand ([7]). The Responsiveness strategy is 
suitable in scenarios with less predictable and more 
uncertain demands, the prime focus being on the 
time taken to respond to external disturbances. The 
normally accepted strategy for achieving good 
responsiveness is through the maintenance of 
adequate pipeline inventories throughout the chain, 
to ensure an adequate fill rate ([7]). However, when 
the demand suddenly increases, the presence of 
large replenishment lags in the system can magnify 
the effect of the demand disturbance, and result in 
stock-outs, with back-orders increasing 
dramatically. The large back-order positions can 

consequently ruin the responsiveness characteristics 
of the chain. And hence the presence of 
replenishment lags in SCs subject to uncertain 
demands can be viewed as one of the most severe 
forms of disruptions with respect to responsiveness 
performance.  
Concomitant to this, an important feature of a SC is 
the concept of its recovery from disruptions and is 
an area of growing interest and research ([8], [28], 
[12], [41]). And one of the most important 
underlying causal factors affecting this phenomenon 
is the dynamics of the system, and consequently the 
recovery characteristics of the system from 
disruptions can be studied in detail through dynamic 
modelling of the system.  
And hence there is a felt need to be able to study the 
dynamic responsiveness and recovery behavior of a 
SC operating under large replenishment lags when 
subjected to sudden demand disturbances. And 
consequently, this would help in selecting good 
replenishment controls to enhance the 
responsiveness and recovery characteristics of the 
chain.  
Thus, the research questions that this paper seeks to 
answer are the following: 
1) Can we predict the responsiveness and recovery 
behavior of the system under the  
    conditions stated above? 
2) Can we then suggest a good dynamic 
replenishment control to enhance responsiveness 
and 
     recovery?  
3) Concomitant to the above, can we also study the 
specific effect of replenishment lag on  
     system behavior? 
Hence the triple objectives of our paper are: 
1) Firstly, to model and predict the responsiveness 
and recovery behavior of the system  
     under conditions as mentioned above. 
2) Secondly, to synthesize a good dynamic 
replenishment control to enhance responsiveness 
     and recovery performance. 
3) Finally, to study the specific effect of lag on the 
system, which is taken up through a  
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    comparative analysis. 
And as a spin-off his could also be of benefit for the 
study of resilience of a SC in future, which in 
essence, and implicitly involves, the recovery of the 
system from disruptions. 
To this end, section 2 briefly reviews the relevant 
literature, while section 3 sets down the 
Methodology and the dynamic modelling 
framework for the study, while also defining 
Responsiveness and Recovery measures, and other 
relevant performance metrics.  Sections 4 through 7 
examine the dynamic behavior under various 
replenishment control policies, while section 8 
presents a detailed comparative study and discussion 
of their performance. Section 9 then examines 
specifically the effect of lag on system performance 
by comparing the performance characteristics of this 
system with two other parallel systems closely 
related to this one, while section 10 translates the 
results down to actionable points and hence 
mentions the managerial implications of the study. 
And finally, Section 11 concludes by summarizing 
the main results, and mentioning the limitations of 
the study and scope for further work. 
 
2. Literature Review 
The literature on SC dynamics commenced with the 
application of servo-control mechanisms in 
production-control [38] and the use of system 
dynamic methodologies [13] subsequently. [4] and 
[33] provide comprehensive surveys on the 
subsequent use of these methods in production-
inventory systems, while [36], [37] examine some of 
the modelling aspects. The recent books [27], [10], 
and [20]   also cover some of the modeling concepts. 
Concomitantly, there has been a large amount of 
research work recently pertaining to optimal 
inventory policies and the bullwhip effect and its 
mitigation on the one hand, as well as on SC 
coordination and coordination mechanisms using 
pricing and profit-sharing contracts on the other, 
both of which we do not cite herein, since our focus 
is primarily on the responsiveness and recovery 
characteristics (e.g. [3], [11], [34], [42], [44]). On 
the topic of SC responsiveness and recovery, some 
of the most recent papers, which we have listed in 
the references, cover a wide range of topics, and use 
a wide range of methods ranging from conceptual 
formulations, statistical analyses, case analyses, 
simulation, and DEA. But there appears to have 
been less work on the dynamic mathematical 
modelling aspects of SC disruptions and their 
analysis, thereby pointing to a discernible gap in the 
literature on responsiveness and recovery. And since 
the predictive capability of mathematical models 
make them an important constituent in any topic, 
this paper attempts to fill this glaring gap using 
dynamic mathematical modelling methods. 
One of the recent papers [39] takes up control-
theoretic modelling using block-diagrams and 

transfer function methods (in the Laplace-
transformed domain) to define and quantify 
resilience in a SC. And after a thorough analysis, it 
concludes that most control strategies are not robust 
to lead-time disturbances. Its conclusions also 
reinforce the need for better controls for enhancing 
the performance of SCs under such conditions. A 
recent paper on inventory control in a dynamic 
supply chain system considering supply-price trade-
off also uses closed-loop control theory ([2]), while 
another ([1]) has used optimal control theory as a 
means to mitigate the bull-whip effect in a feedback 
control framework through extensive numerical 
computations. Though the latter two would pertain 
more to efficient chains, however, they reinforce the 
applicability of such dynamic modelling methods in 
SC analysis. Our paper uses similar methods but 
deals with responsive chains, focusing on 
responsiveness and recovery.  
In one of the recent papers ([21]) the interactions 
between sustainable and resilient SCs have been 
explored, and one of its important conclusions, 
amongst others, is that response effectiveness with 
regard to disruptions is much sought after by diverse 
SCs globally. These findings further reinforce the 
need to have better controls to enhance 
responsiveness and recovery, which is one of the 
important objectives of our study.  
Some recent work on the disruptive effects of lead-
time on SC performance are [17] on a simulation-
based study showing the major impact of lead time 
variability on SC inventories, stock-outs and order 
variances all through the chain on the one hand, and 
[5], [6], [23], and [30] on the other, which also deal 
with variable lead-times; however their quest is for 
optimal inventory control policies in such contexts 
as is pertinent to efficient chains. The papers [24] 
and [23] deal with optimal expediting policies and 
optimal contingency policies respectively in the face 
of disruptions, while [26] looks at lead-time 
management using expediting hubs. While [19] 
deals with management of supply disruptions using 
incentives for capacity restoration, [40] and [18] 
take up disruptions with unreliable endogenous 
supply processes, and reliable/unreliable suppliers 
respectively.  
The papers above analyze the effects of lead-time 
using statistical methods on the one hand, and a wide 
range of mitigation mechanisms like incentives for 
capacity restoration, expediting hubs, more reliable 
suppliers etc. on the other. Whereas a dynamic 
mathematical model of the system under large lead-
times and its dynamic analysis, was not found to 
have been taken up in detail in the literature. And 
this paper attempts to bridge this apparent gap.  
It is only recently that attention and research has 
now started focusing on the dynamic control of 
responsive SCs to improve their response times 
([31], [27]). A comprehensive review paper on this 
topic is [14] which focusses on control methods and 
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identifies dynamic modelling as an important facet 
of the study of SC performance. A few recent papers 
([25], [32], [39]) have treated some aspects of 
dynamic system behavior under conditions of zero 
lag, whereas our paper takes up the important case 
of SCs under large non-zero lags.     
 
3 Methodology: The Dynamic Modelling 
Framework and Design Stipulations 
3.1 The Dynamic Modelling Notation  
In developing the dynamic model equations we 
make use of deviation variables as is usually done in 
modelling of dynamical systems (e.g. [31], [39]): 
     𝑥𝑥𝑖𝑖(𝑘𝑘)  is the inventory deviation (from its 
design/nominal value) at time k, at stage i of the 
                chain 
     𝑞𝑞𝑖𝑖(𝑘𝑘) is the material flow deviation (from its 
design/nominal value) in period (k-1, k],  
                into stage i  
      𝑟𝑟3(𝑘𝑘)  is the deviation (from the predicted) in 
demand observed at the warehouse in (k-1,  
                  k]. 
With: i = 1, representing (the raw material) the 
upstream end of the production facility 
          i = 2   representing (the finished goods) the 
downstream end of the production facility 
          i = 3    representing (the finished goods) the 
warehouse. 
The dynamic equations of the system can then be 
written in terms of these deviation variables as:          
𝑥𝑥𝑖𝑖(𝑘𝑘 + 1) = 𝑥𝑥𝑖𝑖(𝑘𝑘) + 𝑞𝑞𝑖𝑖(𝑘𝑘 + 1) − 𝑞𝑞𝑖𝑖+1(𝑘𝑘 + 1)                                
(3.1) 
Where for i = 3,   𝑞𝑞4(𝑘𝑘) = 𝑟𝑟3(𝑘𝑘) , is the demand 
outflow from the warehouse.  
The standard initial conditions are: 
{(𝑥𝑥𝑖𝑖(𝑘𝑘), 𝑞𝑞𝑖𝑖(𝑘𝑘), 𝑟𝑟3(𝑘𝑘)) = (0,0,0), 𝑘𝑘 ≤ 0}. The 
control variables are the replenishment flows, 
through which control is exercised over the system.  
In our study, we take the demand disturbance to be 
a sudden and sustained increase in demand off-take, 
while the replenishment lag is presumed to be pre-
existing in the system. The demand disturbance in 
our system is represented by a Heaviside step 
function of magnitude 0b  , and a random 
disturbance term superimposed on it, given by: 
𝑟𝑟3(𝑘𝑘 + 1) = 𝑏𝑏0𝐻𝐻(𝑘𝑘) + 𝜀𝜀(𝑘𝑘 + 1), where𝐻𝐻(𝑘𝑘) =
�1, 𝑘𝑘 ≥ 0
0, 𝑘𝑘 < 0�    and,  𝜀𝜀(𝑘𝑘) ≈ 𝑊𝑊𝑊𝑊(0,𝜎𝜎2)                                

(3.2)  ,  with  𝜀𝜀(𝑘𝑘) , the stochastic component of the 
disturbance, usually taken to be a White Noise 
process.  
The replenishment lag is measured by the number of 
periods of delay between the period of the physical 
arrival of the consignment, and that immediately 
succeeding the period of order initiation. This 
convention is based on that generally followed in 
practice as well as in the literature. And hence the 
lag is taken as zero if the ordered consignment 

arrives within the next period (instantaneous 
delivery being relatively rare in practice). 
 
3.2 Performance Metrics for Responsiveness, 
Recovery, and Replenishment System  
      Design 
In our paper, we take the Lag-specific back-orders 
in unit-periods per unit of lag as defined below, as 
an inverse measure of responsiveness; i.e. the lower 
its value, the higher would be taken to be the 
responsiveness. This is defined as under: 
     Lag-specific Back-orders     

=      −∑ 𝑚𝑚𝑚𝑚𝑚𝑚(0,𝑥𝑥𝑖𝑖(𝑘𝑘))𝑡𝑡
𝑘𝑘=0

𝑙𝑙𝑖𝑖+1
                    (3.3) 

in stage i of the chain, measured in number of unit- 
periods per period of replenishment lag, and where 

il  is the lag present in stage i of the chain. The 
numerator is the cumulative back-orders till 
restoration to normalcy, and is divided by the 
number of periods of lag present in the system. This 
measure has an inverse relationship with the fill-
rate. This measure can be interpreted as the Back-
orders per period of lag. 

Note1: We divide by  (𝑙𝑙3 + 1) rather than by 3l to 
be consistent with our definition and measurement 
of lag, since it is presumed that the earliest delivery 
of consignments ordered would be in the succeeding 
period (instantaneous delivery being relatively rare 
in practice).  
We next define the Lag-adjusted Recovery Time 
which we take as an inverse measure of Recovery. 
Lag-adjusted Recovery Time: The Recovery Time 
less the number of periods of lag in the system, i.e. 
Lag-adjusted Recovery Time =  Recovery Time – 
(Number of periods of lag in system)          (3.4) 
where the Recovery Time is the time taken as the 
time to restore the system to within 90% of its 
normal and stable operating levels. And since the 
state variable of the system is its inventory level, we 
define the Recovery time as under: 
Recovery Time: The time taken to restore the 
inventory level of the system to within %10± of 
its normal (nominal) operating levels, and maintain 
it thereafter, with time being measured from the 
occurrence of disruption/disturbance.  
We can note that to recover from a disruption, the 
system would need a duration of time at least equal 
to the number of periods of lag in the system, and 
hence reducing the Recovery time by the lag would 
yield the intrinsic recovery time of the system which 
is the quantity of critical interest to us in recovery 
performance analysis.  
In our paper we evaluate Responsiveness and 
Recovery performance using the two metrics above. 
We next look at the other response characteristics 
which would impact replenishment system design, 
since our objective is also to synthesize a good 
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replenishment control scheme for enhanced 
performance. 
The response of the system to the demand 
disturbance will have two parts: 
1) The deterministic part: the mean response, which 
would characterize the system  
     behavior, and,  
2) The stochastic part, representing the random 
fluctuations that could occur even after the  
     system is restored to normalcy, which is 
characterized by the inventory variance, and  
     results for which are available in the literature. 
Due to, and subsequent to the perturbation of the 
system by the sudden jump in demand, the inventory 
levels decrease initially and fluctuate before they are 
restored to their normal levels again. In this context, 
the dynamic performance metrics for the mean 
response that are of interest from the point of view 
of replenishment system design would be the 
following ([43], [31]): 
a. The “trough value” or the lowest dip in the 
inventory levels, which determines the base- 
    stocks to be carried in the system to prevent 
disruptions (the ‘undershoot’).    
b. Permanent depletion of the inventory level (the 
"offset") if any, which indicates whether 
    the system is restored to its original level, or not. 
c. The amplitude of fluctuations of the inventory, 
which we would like to damp out as rapidly  
    as possible to restore the system to steady 
operation as quickly as possible. 
d. The extent of time the inventory level stays 
depleted (in the negative region), which can be 
     taken as an indirect measure of the stock-out risk; 
and the larger the magnitude and extent 
     of time in negative inventory region, the larger 
would be taken to be the implied risk.   
Additionally, for the above characteristics of the 
mean response to be meaningful, we would also 
require the inventory variance, which is commonly 
taken as a measure of the robustness of the system 
to random variations, to be bounded, results for 
which are available in the literature. Consequently, 
we henceforth focus our attention on the mean 
response. 
 
3.3 Dynamic Replenishment Controls, Design 
Objectives, and Design Stipulations  
In most supply systems, the replenishment control 
action is triggered by the inventory and demand 
levels at the warehouse ([35], [43], [31]). Thus, in 
most cases the replenishment flow is given by a 
function of the latest available/observed set of 
inventory and demand deviations, as under:   
𝑞𝑞𝑖𝑖(𝑘𝑘 + 1) = 𝑓𝑓(𝑥𝑥3(𝑘𝑘 − 1 − 𝑙𝑙𝑖𝑖), 𝑟𝑟3(𝑘𝑘 − 1 −
𝑙𝑙𝑖𝑖), 𝑥𝑥3(𝑘𝑘 − 2 − 𝑙𝑙𝑖𝑖), 𝑟𝑟3(𝑘𝑘 − 2 − 𝑙𝑙𝑖𝑖), 𝑥𝑥3(𝑘𝑘 − 3 −
𝑙𝑙𝑖𝑖), . . . . ), 
 for i = 1,2,3                               (3.5),  
where, the il s  are the lags in the different stages of 
the system. When the value of the lag is positive, any 

increase in demand will pull down the inventory 
levels leading to inventory fluctuations both at the 
warehouse as well as upstream units. It thus 
becomes essential in a responsive chain to 
specifically design the replenishment system to be 
able to handle demand increases in the presence of 
delays and replenishment lags.  
The number of periods of lag as well as the 
magnitudes of demand increases are both 
environmental parameters which the designer has no 
control over. And hence, the objective of the design 
would be to handle as high a lag, and 
simultaneously as high a magnitude of demand 
increase, as would reasonably be possible to design 
for. In our paper, we analyze the system behavior for 
up to as high a lag as is found tractable by 
elementary methods for a step increase in demand.  
Our objective is to choose a control scheme that 
would be capable of handling arbitrarily high lags 
in situations of sudden increases in demand.    
We focus our attention hereafter on the downstream 
end of the chain, viz. the warehouse, which is the 
interface between the SC and its market, and whose 
performance determines the operational 
performance of the entire SC. Upstream units can be 
analyzed in likewise manner, using the inflow to the 
succeeding downstream units as the “demand” for 
the immediately preceding upstream unit in the 
chain.  
We now derive the Initial Conditions (ICs) for the 
warehouse system.  
Since the lag is pre-existing in the system, the 
increased demand would keep pulling down the 
inventory at the warehouse by the quantum of 
increase in demand,( ‘ 0b ’ units every period), till 
the period )1( 3 +l , only after which the system 
begins to feel the effect of the additional 
replenishment flow (due to the replenishment 
control action). Thus the ICs are:  
{𝑥𝑥3(0) = 0, 𝑥𝑥3(𝑘𝑘) = −𝑘𝑘𝑏𝑏0 in 0 ≤ 𝑘𝑘 ≤ 𝑙𝑙3, 𝑥𝑥3(𝑙𝑙3 +
1) = −𝑙𝑙3𝑏𝑏0 = 𝑥𝑥3(𝑙𝑙3 + 2)} }           (3.6).  
The last equality in (3.6) is by virtue of the starting 
condition: 0)0(3 =x  . 
Under the conditions stated above, we first derive 
the responsiveness and recovery behavior of the 
warehouse inventory system under the three 
conventional forms of dynamic controls, the 
Proportional controls (P(I)), Proportional-integral 
controls (PI(I)), and the Proportional-integral-
derivative controls (PID(I)) respectively, where the 
“(I)” within the parentheses denotes “inventory-
triggered”. Subsequently we take up the Moving 
Average (MA(ID)) controls, where likewise, “(ID)” 
within parentheses denotes “Inventory and Demand-
triggered”. We then conduct a detailed performance 
analysis of these controls and then suggest a good 
scheme with enhanced responsiveness and recovery 
performance.  
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In this, our Design Stipulations for the selected 
control will be two-fold, as under:  
1)  Firstly, it should reduce both Lag-specific Back-
Orders and the Lag-adjusted Recovery 
     Time (thereby enhancing both responsiveness 
and recovery performance) 
2)  Secondly, the control design should be 
mathematically tractable for any arbitrarily large 
     lag.  
We now proceed with the performance analysis of 
the four control schemes keeping these two 
stipulations in mind. 
 
4. Proportional Replenishment Control 
(P(I)-Systems)  
In this simple scheme, the replenishment order 
quantities at each stage and in each period are set 
proportional to the latest observed inventory 
deviations at the warehouse, i.e. 
𝑞𝑞𝑖𝑖(𝑘𝑘 + 1) = 𝐾𝐾𝑖𝑖𝑥𝑥3(𝑘𝑘 − 1 − 𝑙𝑙𝑖𝑖) for i = 1,2,3                  
(4.1) 
Where iK  are the ‘proportionality’ factors (and 
hence the term ‘proportional’ control).  
Substituting for the replenishment flows, the 
dynamic equation of the warehouse is given by: 
 𝑥𝑥3(𝑘𝑘 + 1) − 𝑥𝑥3(𝑘𝑘) − 𝐾𝐾3𝑥𝑥3(𝑘𝑘 − 1 − 𝑙𝑙3) =
−𝑟𝑟3(𝑘𝑘 + 1) = −𝑏𝑏0𝐻𝐻(𝑘𝑘) + 𝜀𝜀(𝑘𝑘 + 1), valid in 

13 +≥ lk (4.2) 
Using the forward shift operator E, defined by: 
𝐸𝐸𝐸𝐸(𝑘𝑘) = 𝑥𝑥(𝑘𝑘 + 1), the equation can be written in 
standard Operator form as:  
(𝐸𝐸𝑙𝑙3+2 − 𝐸𝐸𝑙𝑙3+1 − 𝐾𝐾3)𝑥𝑥3(𝑘𝑘) ≡ −𝐸𝐸𝑙𝑙3+1𝑏𝑏0𝐻𝐻(𝑘𝑘) +
𝜀𝜀(𝑘𝑘+3𝑙𝑙 + 2) ≡ −𝑏𝑏0 + 𝜀𝜀(𝑘𝑘 + 𝑙𝑙3 + 2)   (4.3) , valid in  

0≥k  .  
This is a linear difference equation (LDE) of order 

)2( 3 +l , with the )2( 3 +l  initial conditions 
derived above. Hence, we have the Deterministic 
LDE for the mean response, and the Stochastic 
Difference Equation (SDE) for the stochastic part of 
the response, given respectively by: 
(𝐸𝐸𝑙𝑙3+2 − 𝐸𝐸𝑙𝑙3+1 − 𝐾𝐾3)𝑥𝑥3(𝑘𝑘) ≡ −𝑏𝑏0𝐻𝐻(𝑘𝑘 + 1) =
−𝑏𝑏0 , valid in  0≥k     (4.4a)  (for the mean 
response) 
(𝐸𝐸𝑙𝑙3+2 − 𝐸𝐸𝑙𝑙3+1 − 𝐾𝐾3)𝑥𝑥3(𝑘𝑘)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≡ −𝜀𝜀(𝑘𝑘 + 𝑙𝑙3 + 2) , 
valid in 0≥k     (4.4b)      (for the stochastic part). 
We focus our attention on the deterministic LDE, the 
solution of which yields the mean response, which 
governs the response characteristics.  
In the literature the SDE is used in computing the 
limiting inventory variance to essentially check for 

its bounded-ness. In our paper we take the results on 
inventory variance from the literature. In a specific 
case for which it is not available, we derive them in 
the Appendix. 
  
4.1 Single period Lag   
For single period lag, i.e.  13 =l  , eqn. (4.4a) 
reduces to:   [𝐸𝐸3 − 𝐸𝐸2 − 𝐾𝐾3]𝑥𝑥3(𝑘𝑘) ≡ −𝑏𝑏0  valid in 

0≥k  , with ICs: {𝑥𝑥3(0) = 0, 𝑥𝑥3(1) =
−𝑏𝑏0, 𝑥𝑥3(2) = −2𝑏𝑏0} . Elementary analysis yields 
the region of stability for the system as: (−0.619 <
𝐾𝐾3 < 0) , and instability in: 619.03 −<K  , and 
𝐾𝐾3 ≥ 0 . 
The best damping is obtained for 𝐾𝐾3 = −(4/27).  
We also look at the maximum permissible value of 
𝐾𝐾3 = −0.619 as an extreme case. 
The system response for maximum damping for 
𝐾𝐾3 = −(4/27) and the extreme case are given 
respectively by:  
    𝑥𝑥3(𝑘𝑘)/𝑏𝑏0 ≡ −6.75 + (0.0833)(−1/3)𝑘𝑘 +
(6.667 + 2𝑘𝑘)(2/3)𝑘𝑘  , valid in 𝑘𝑘 ≥ 0 , and    (4.5) 
     𝑥𝑥3(𝑘𝑘)/𝑏𝑏0 ≡ −1.6155 + (0.0988)(−0.619)𝑘𝑘 +
1.7184𝐶𝐶𝐶𝐶𝐶𝐶(0.629𝑘𝑘 + 𝜑𝜑), valid in 𝑘𝑘 ≥ 0, with     
       𝑡𝑡𝑡𝑡𝑡𝑡 𝜑𝜑 = −0.6161                                                                                                           
(4.6)       
The RHSs of the equations above are the responses 
for unit step demand. And in both equations the first 
term has the value −1/(|𝐾𝐾3|) , and gives the offset 
value in eqn. (4.5) , and the center-line of 
oscillations in eqn. (4.6). 
Thus for smaller values of the control parameter 3K  
, the system though stable has a very high offset, 
while for larger values of  3K  , it has high amplitude 
perpetual oscillations, thus showing a trade-off 
between offset and amplitude of oscillations. The 
response of the system is shown in Fig. 1 for the two 
values of 𝐾𝐾3 = −4/27,𝐾𝐾3 = −0.619, for unit step 
demand. The value of total back-orders (and hence 
also the Lag-specific Back-orders) increases without 
limit as time increases in the first case, and oscillates 
in the second. The recovery time (and hence also the 
Lag-adjusted Recovery Time) becomes infinite in 
both cases, thereby leading to loss of responsiveness 
and recovery in both.  The limiting inventory 
variances are obtained as: 𝑙𝑙𝑙𝑙𝑙𝑙𝑘𝑘→∞ 𝑣𝑣𝑣𝑣𝑣𝑣( 𝑥𝑥3(𝑘𝑘)) =
6.05𝜎𝜎2 for 𝐾𝐾3 = −4/27, and   4.243𝜎𝜎2 for 𝐾𝐾3 =
−0.619, which though low are of little significance 
due to the poor performance characteristics of the 
mean response. 
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4.2 Two-period Lag and Higher 
For this case, the system equation is:  
[𝐸𝐸4 − 𝐸𝐸3 − 𝐾𝐾3]𝑥𝑥3(𝑘𝑘) ≡ −𝑏𝑏0 − 𝜀𝜀(𝑘𝑘 + 4)      (4.7)                                                         
The stability condition for 23 =l  is : 

02/1 3 <<− K . However, determining the exact 
values of the four roots of the LHS Operator 
analytically or computationally becomes 
cumbersome, since all four roots are complex. 
Representing the complex roots as jyx +  yields 
the system of non-linear equations in x and y (by 
equating the real and imaginary parts to zero 
separately) as: 
  𝑥𝑥4 − 6𝑥𝑥2𝑦𝑦2 + 4𝑦𝑦4 − 𝑥𝑥3 − 3𝑥𝑥𝑦𝑦2 − 𝐾𝐾3 = −𝑏𝑏0                                                       
(4.8) 
      4𝑥𝑥3 − 4𝑥𝑥𝑦𝑦3 − 3𝑥𝑥2𝑦𝑦 − 𝑦𝑦3 = 0                                                                         
(4.9) 
which requires a two-dimensional Newton-Raphson 
procedure to solve for the roots for each value of  

3K  individually. For a 3-period lag, the analysis 
becomes even more complicated and intractable by 
elementary methods, and we do not take it up here.   
Thus, in summary, the P(I) control shows poor 
responsiveness and recovery performance even for 
lag of a single period, and also exhibits design 
intractability for lags beyond a single period. 
5.  Proportional-integral control schemes:  PI(I) 
systems 
In these schemes, the replenishment order-control 
flows are given by:      𝑞𝑞3(𝑘𝑘 + 1) ≡ 𝐾𝐾𝑝𝑝𝑥𝑥3(𝑘𝑘 − 𝑙𝑙3 −
1) + 𝐾𝐾𝑐𝑐 ∑ 𝑥𝑥3(𝑚𝑚)𝑘𝑘−𝑙𝑙3−1

𝑚𝑚=0                                                          
(5.1) 
where the second term is the ‘integral’ component 
of the control (summation of the inventory 
deviations in our discrete-time system). Substituting 
for the control flows, the equation for the warehouse 
is given in standard form by:  
  𝑥𝑥3(𝑘𝑘 + 𝑙𝑙3 + 2) − 𝑥𝑥3(𝑘𝑘 + 𝑙𝑙3 + 1) − 𝐾𝐾𝑝𝑝𝑥𝑥3(𝑘𝑘) −
𝐾𝐾𝑐𝑐 ∑ 𝑥𝑥3(𝑚𝑚) ≡ −𝑟𝑟3(𝑘𝑘 + 𝑙𝑙3 + 2) ≡ −𝑏𝑏0𝑘𝑘

𝑚𝑚=0     ∀𝑘𝑘 ≥
0    (5.2) 

This equation is easier solved by Transform 
methods, and hence we make use of the Z-transform 
below. 
 
5.1 Single-period Lag 
For single period lag and step demand, taking the Z-
transform and using the ICs, eqn. (5.2) reduces to: 
  [𝑧𝑧4 − 2𝑧𝑧3 + 𝑧𝑧2 − (𝐾𝐾𝑝𝑝 + 𝐾𝐾𝑐𝑐)𝑧𝑧 + 𝐾𝐾𝑝𝑝]𝑋𝑋3(𝑧𝑧) =
−𝑏𝑏0𝑧𝑧       (5.3) 
The solution for highest damping is obtained as: 

=03 /)( bkx  
= −{−(0.6473)(−0.366)𝑘𝑘 + (0.6473)(0.79)𝑘𝑘

+ (0.8194)𝑘𝑘(0.79)𝑘𝑘
+ (0.6931)𝑘𝑘(𝑘𝑘 − 1)(0.79)𝑘𝑘} 

    (5.4).   
The trough value is 4− , or four times the magnitude 
of the demand disturbance and the response 
oscillates about a center-line that gradually increases 
to zero. The damping rate is: kO )79.0(  which is 
very low. The total back-orders till restoration to 
normalcy is -30 unit-periods approximately, and the 
Lag-specific Back-Orders 15 which is moderately 
low, showing moderate responsiveness. The 
recovery time is 25 periods, and Lag-adjusted 
Recovery time is 24 periods showing slow recovery.  
The limiting inventory variance is: 
𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡→∞ 𝑣𝑣𝑣𝑣𝑣𝑣( 𝑥𝑥3(𝑘𝑘)) = 3.93𝜎𝜎2 . 
 
 
5.2 Two-period Lag 
The transform of equation (5.2) with 23 =l  yields:  

[𝑧𝑧4 − 𝑧𝑧3 − 𝐾𝐾𝑝𝑝 − 𝐾𝐾𝑐𝑐
𝑧𝑧

(𝑧𝑧−1)
]𝑋𝑋3(𝑧𝑧) = − 𝑏𝑏0𝑧𝑧

(𝑧𝑧−1)
                                            

(5.5)  
The solution for the best damping is obtained as: 
 𝑥𝑥3(𝑘𝑘)/𝑏𝑏0 = (45.03 + 4.05𝑘𝑘)(0.8)𝑘𝑘 −
44.41(0.9)𝑘𝑘 + (0.431)𝑘𝑘(−0.618𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 +
0.4𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) (5.6) 
The response has an undershoot of  −6.85, and then 
rises gradually to zero at the rate k)9.0( , which is 
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very slow. The total backorders till restoration of 
normalcy is approximately -139 unit-periods, and 
Lag-specific back-order measure is 70 unit-periods 
per period of lag, which is very large indicating low 
responsiveness. The Lag-adjusted recovery time 
increases to above 33 periods, showing very slow 
recovery. The limiting inventory variance in this 
case is 180.91𝜎𝜎2, which is quite large.  

The responses of the system for single and two 
period lags are shown in Fig. 2 for unit step demand, 
showing a marked deterioration in the response with 
increase in lag.  
For lags beyond two periods, the design of the 
system becomes difficult and intractable by 
elementary methods and is not taken up here. 

 

 
 
Summarizing, we thus find that the PI(I) controls 
also show low responsiveness and slow recovery for 
lags of above a single period, and also display design 
intractability for lags beyond two periods. 
 
6. Proportional-integral-derivative type 
of replenishment controls 
In the PID scheme, the control flows are given by 
𝑞𝑞𝑖𝑖(𝑘𝑘 + 1) ≡ 𝐾𝐾𝑖𝑖𝑥𝑥3(𝑘𝑘 − 1 − 𝑙𝑙𝑖𝑖) +
𝐾𝐾𝑐𝑐 ∑ 𝑥𝑥3(𝑚𝑚) + 𝐾𝐾𝑑𝑑𝑖𝑖 (𝑥𝑥3(𝑘𝑘 − 1 − 𝑙𝑙𝑖𝑖) − 𝑥𝑥3(𝑘𝑘 −𝑘𝑘−1−𝑙𝑙𝑖𝑖

𝑚𝑚=0
2 − 𝑙𝑙𝑖𝑖))   (6.1) 
where the third term is the ‘derivative’ component 
of the control (the difference of the two latest 
available inventory deviations in our discrete-time 
system).  
Hence substituting for the control flows, the 
warehouse equation is given by   
 𝑥𝑥3(𝑘𝑘 + 3 + 𝑙𝑙3) ≡ 𝑥𝑥3(𝑘𝑘 + 2 + 𝑙𝑙3) + 𝐾𝐾3𝑥𝑥3(𝑘𝑘 +
1) + 𝐾𝐾𝑐𝑐 ∑ 𝑥𝑥3(𝑚𝑚) + 𝐾𝐾𝑑𝑑𝑖𝑖 (𝑥𝑥3(𝑘𝑘 + 1) − 𝑥𝑥3(𝑘𝑘))𝑘𝑘+1

𝑚𝑚=0 −
𝑟𝑟3(𝑘𝑘 + 3 + 𝑙𝑙3) 
(6.2) .  
 
6.1 Single Period Lag 
For single period lag and system ICs, the transform 
of eqn. (6.2) yields:   [𝑧𝑧4 − 𝑧𝑧3 − 𝐾𝐾𝑝𝑝𝑧𝑧 − 𝐾𝐾𝑐𝑐

𝑧𝑧2

𝑧𝑧−1
−

𝐾𝐾𝑑𝑑(𝑧𝑧 − 1)]𝑋𝑋3(𝑧𝑧) = −𝑧𝑧4𝑅𝑅3(𝑧𝑧) = 𝑧𝑧3 𝑏𝑏0𝑧𝑧
𝑧𝑧−1

                  
(6.3) 
The solution for best damping is obtained as: 

𝑥𝑥3(𝑘𝑘)/𝑏𝑏0 = [{0.338 − 1.945𝑘𝑘 − .248𝑘𝑘(𝑘𝑘 − 1) +
0.001𝑘𝑘(𝑘𝑘 − 1)(𝑘𝑘 − 2)}(0.645)𝑘𝑘 −
0.338(−0.58)𝑘𝑘]𝐻𝐻(𝑘𝑘 − 1) (6.4) .   
The response has an undershoot of -2 and gradually 
increases to zero at the rate kO )645.0( , which is 
moderately fast. The Lag-specific backorders till 
restoration to normalcy is -14 unit-periods, which is 
moderately low, indicating moderately high 
responsiveness. The recovery time is about 15 
periods, and the Lag-adjusted Recovery Time is 14 
periods, showing moderate recovery performance.  
The limiting inventory variance is obtained as: 
𝑙𝑙𝑙𝑙𝑙𝑙𝑘𝑘→∞ 𝑣𝑣𝑣𝑣𝑣𝑣( 𝑥𝑥3(𝑘𝑘)) = 4.164𝜎𝜎2.   
6.2. Two Periods Lag. 
For this case, the transform of the warehouse 
equation is:

 
 

[𝑧𝑧6 − 2𝑧𝑧5 + 𝑧𝑧4 − 𝑧𝑧2(𝐾𝐾𝑝𝑝 + 𝐾𝐾𝑐𝑐 + 𝐾𝐾𝑑𝑑) + 𝑧𝑧(𝐾𝐾𝑝𝑝 +
2𝐾𝐾𝑑𝑑) − 𝐾𝐾𝑑𝑑] 𝑋𝑋3(𝑧𝑧)

𝑧𝑧−1
= −𝑧𝑧4 𝑏𝑏0𝑧𝑧

𝑧𝑧−1
       (6.5) 

The response for best damping is then obtained as:   
=03 /)( bkx  

 [−1.58 − 0.98𝑘𝑘 + 0.42𝑘𝑘2 − 0.23𝑘𝑘3](0.725)𝑘𝑘 +
[1.58𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 0.003𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆](0.673)𝑘𝑘, 
𝜃𝜃 = −0.84radians     (6.6)  .   
The response has an undershoot of -8, and exhibits 
low amplitude damped oscillations about a center-
line that gradually increases to zero at the rate of  
(0.725)𝑘𝑘, which is fairly slow. The total backorders 
till restoration to normalcy is -116 unit-periods, with 
the Lag-specific back-order measure being 39 unit-
periods per period of lag which is very large, 
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indicating loss of responsiveness. The recovery time 
is 33 periods, and the Lag-adjusted Recovery time is 
31 periods, showing very slow recovery. The 
limiting inventory variance is 15.58𝜎𝜎2 . 

The response of the system for single and two period 
lags is shown in Fig. 3 for unit step demand. 

 

 
 
For lags of three periods and higher, design of the 
system again becomes difficult and intractable by 
elementary methods and is not taken up here. 
Thus, in summary, the PID controls show moderate 
responsiveness and recovery for up to a single 
period of lag, but poor performance thereafter. And 
they also exhibit design intractability for lags 
beyond two periods. 
Additionally, in all the above studied controls (P(I), 
PI(I), and PID(I)) the inventory stays in the negative 
region all through and for long periods of time, 
thereby implying high stock-out risk.  
 
7. Moving-Average-Type Controls  
Here the control flows are set to a weighted Moving 
Average (MA) of the latest available inventory 
deviations up to a certain number (say r) periods 
back, r being the order of the MA, and thus being 
given by:    
𝑞𝑞𝑖𝑖(𝑘𝑘 + 1) = ∑ 𝐾𝐾𝑙𝑙3𝑥𝑥3(𝑘𝑘 − 1 − 𝑙𝑙3)𝑟𝑟

𝑙𝑙=1                                                 
(7.1) 
Where the  𝐾𝐾𝑙𝑙3 are the weights, which are the control 
parameters and can be set by us.  
The advantage of these MA control schemes is that 
they have up to r control parameters, which can be 
tuned by us, and hence can be expected to perform 
better than the previous controls. An additional 
advantage is that in this type of MA control scheme, 
the control can be designed easily using elementary 
methods as shown below for any arbitrarily high 
value of lag, 𝑙𝑙3. And the system response can be 
derived as a function of the lag 𝑙𝑙3 (thus exhibiting 
design tractability for any high value of lag). 
However, these controls are known to have an 
offset. And hence, to improve their performance and 
speed up the response, the control is usually made 

more pro-active by adding a demand trigger term to 
the control flows and is shown below.  
 
7.1 The Conventional MA(ID) Control Scheme 
The simplest control scheme uses two inventory 
trigger terms and a single demand trigger term in the 
MA(ID) control, setting the control flow as: 
 𝑞𝑞3(𝑘𝑘 + 1) ≅ 𝐾𝐾13𝑥𝑥3(𝑘𝑘 − 1 − 𝑙𝑙3) + 𝐾𝐾23𝑥𝑥3(𝑘𝑘 − 1 −
𝑙𝑙3 − 1) + 𝐾𝐾30𝑟𝑟3(𝑘𝑘 − 1 − 𝑙𝑙3)                     (7.2) 
And hence the system equation is given by 
[𝐸𝐸𝑙𝑙3+3 − 𝐸𝐸𝑙𝑙3+2 − 𝐾𝐾13𝐸𝐸 − 𝐾𝐾23]𝑥𝑥3(𝑘𝑘) ≡
−𝐸𝐸𝑙𝑙3+2𝑟𝑟3(𝑘𝑘 + 1) + 𝐾𝐾30𝑟𝑟3(𝑘𝑘 + 1)                           (7.3) 
Under the condition: 𝐾𝐾23 = −𝐾𝐾13, the LHS Operator 
and the LDE simplifies to:  
(𝐸𝐸 − 1)(𝐸𝐸𝑙𝑙3+2 − 𝐾𝐾13)𝑥𝑥3(𝑘𝑘) ≡ −𝐸𝐸𝑙𝑙3+2𝑟𝑟3(𝑘𝑘 + 1) +
𝐾𝐾30𝑟𝑟3(𝑘𝑘 + 1)                                (7.4) 
The solution for our system with a unit step input is 
then given by: 
For Case1:  𝑙𝑙3 + 2 = odd: 
𝑥𝑥3(𝑘𝑘)/𝑏𝑏0 ≡ 𝐶𝐶0 + 𝐾𝐾3

0−1
1−𝐾𝐾1

3 𝑘𝑘 + 𝐶𝐶2𝜌𝜌𝑘𝑘 −

∑ 𝜌𝜌𝑘𝑘{𝐴𝐴𝑛𝑛𝐶𝐶𝐶𝐶𝐶𝐶(2𝜋𝜋𝜋𝜋𝜋𝜋
𝑙𝑙3+2

) + 𝐵𝐵𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆(2𝜋𝜋𝜋𝜋𝜋𝜋
𝑙𝑙3+2

)
�𝑙𝑙3+22 �
𝑛𝑛=1 }        (7.5a) 

For Case2:  𝑙𝑙3 + 2 = even: 
 𝑥𝑥3(𝑘𝑘)/𝑏𝑏0 ≡ 𝐶𝐶0 + 𝐾𝐾3

0−1
1−𝐾𝐾1

3 𝑘𝑘 + 𝐶𝐶2𝜌𝜌𝑘𝑘 + 𝐶𝐶3(−𝜌𝜌)𝑘𝑘 −

∑ 𝜌𝜌𝑘𝑘{𝐴𝐴𝑛𝑛𝐶𝐶𝐶𝐶𝐶𝐶(2𝜋𝜋𝜋𝜋𝜋𝜋
𝑙𝑙3+2

) + 𝐵𝐵𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆(2𝜋𝜋𝜋𝜋𝜋𝜋
𝑙𝑙3+2

)
𝑙𝑙3+2
2 −1

𝑛𝑛=1 }        (7.5b)  

with  𝜌𝜌 = (𝐾𝐾13)1/(𝑙𝑙3+2) . We get a stable solution 
only for 𝐾𝐾30 = 1, with offset of  0C  , and damping 
rate of  𝑂𝑂(𝜌𝜌)𝑘𝑘, which can be controlled by us by a 
suitable choice of 𝜌𝜌 = (𝐾𝐾13)1/(𝑙𝑙3+2) .  
The constants {𝐶𝐶0,𝐶𝐶2,𝐶𝐶3,𝐴𝐴𝑛𝑛,𝐵𝐵𝑛𝑛}can be evaluated 
using the initial conditions: {𝑥𝑥3(𝑘𝑘) ≡ −𝑘𝑘𝑏𝑏0, for𝑘𝑘 =
0,1,2, . . . , 𝑙𝑙3 + 2}. We can however note the 
presence of an offset of −𝑏𝑏0𝐶𝐶0for this control also. 
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For a numerical illustration, we take 𝑙𝑙3 = 5 and 
𝐾𝐾31 = 1/16, yielding 𝜌𝜌 = (1/16)1/7 = 0.673 .  
For a unit step demand disturbance the ICs are 
obtained as: (𝑥𝑥3(0) . . . . . . . . . 𝑥𝑥3(7)) =
(0 −1 −2 −3 −4 −5 −6 −7)           
(7.6a),  
And for a step disturbance of magnitude  0b , 
   (𝑥𝑥3(0) . . . . . . . . . 𝑥𝑥3(7)) =
𝑏𝑏0(0 −1 −2 −3 −4 −5 −6 −7)           
(7.6b) 
From which we obtain the vector of coefficients as  
(𝐶𝐶0,𝐶𝐶2,𝐴𝐴1,𝐵𝐵1,𝐴𝐴2,𝐵𝐵2,𝐴𝐴3,𝐵𝐵3) =
(−7.471,13.930,3.591,3.384,2.381,−0.874,0.487,−1.041)  
,  
and hence the complete response as :  
 𝑥𝑥3(𝑘𝑘)/𝑏𝑏0 = −7.47 + 13.93(0.673)𝑘𝑘 −
(0.673)𝑘𝑘{3.58𝐶𝐶𝐶𝐶𝐶𝐶(2𝜋𝜋𝜋𝜋/7) + 3.38𝑆𝑆𝑆𝑆𝑆𝑆(2𝜋𝜋𝜋𝜋/7)  +   
 +2.38𝐶𝐶𝐶𝐶𝐶𝐶(4𝜋𝜋𝜋𝜋/7) − 0.874𝑆𝑆𝑆𝑆𝑆𝑆(4𝜋𝜋𝜋𝜋/7) +
0.487𝐶𝐶𝐶𝐶𝐶𝐶6𝜋𝜋𝜋𝜋/7) − 1.04𝑆𝑆𝑆𝑆𝑆𝑆(6𝜋𝜋𝜋𝜋/7)}            (7.7) 
The response is shown in Fig. 4 for unit step 
demand. The system inventory depletes rapidly to its 
steady negative level of  – 7.47 units ( −7.47𝑏𝑏0 for 
a step input of magnitude 0b  units), showing 
complete lack of recovery.  Though the damping rate 
is reasonably high being given by (0.673)𝑘𝑘, the total 
back-order position would obviously increase 
without limit, resulting in loss of responsiveness. 
The implied stock-out risk would also be high, both 
of which are due to the (-)ve offset.  
Hence to eliminate the offset a modification is 
introduced as is shown below. 
 
7.2 MA(ID) Control with Recovery Flow 
A simple option used is the addition of a recovery 
flow which is essentially a step-up flow to the 
MA(ID) control flows for a limited period, which 
would be capable of restoring the system to its 
normal levels within a desired number of periods or 
within a desired recovery time. The control flows are 
thus set as:       
𝑞𝑞3(𝑘𝑘 + 1) ≅ 𝐾𝐾13𝑥𝑥3(𝑘𝑘 − 1 − 𝑙𝑙3) + 𝐾𝐾23𝑥𝑥3(𝑘𝑘 − 1 −
𝑙𝑙3 − 1) + 𝐾𝐾30𝑟𝑟3(𝑘𝑘 − 1 − 𝑙𝑙3) + 𝛿𝛿(𝑘𝑘)   (7.8)                   
Hence, the demand-triggered component of the 
control flow is set to 𝐾𝐾03𝑟𝑟3(𝑘𝑘 − 1 − 𝑙𝑙3) + 𝛿𝛿(𝑘𝑘) for a 
limited period of time, and thereafter, restored to the 
normal MA(ID) control flow.  

For our system with a step input of magnitude 𝑏𝑏0, 
the system response is then given by: 
 For Case1:  𝑙𝑙3 + 2 = odd: 
 𝑥𝑥3(𝑘𝑘)/𝑏𝑏0 ≡ 𝐶𝐶0 + 𝐾𝐾3

0+𝛿𝛿(𝑘𝑘)−1
1−𝐾𝐾1

3 𝑘𝑘 + 𝐶𝐶2𝜌𝜌𝑘𝑘 −

∑ 𝜌𝜌𝑘𝑘{𝐴𝐴𝑛𝑛𝐶𝐶𝐶𝐶𝐶𝐶(2𝜋𝜋𝜋𝜋𝜋𝜋
𝑙𝑙3+2

) + 𝐵𝐵𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆(2𝜋𝜋𝜋𝜋𝜋𝜋
𝑙𝑙3+2

)
�𝑙𝑙3+22 �
𝑛𝑛=1 }        (7.9a)  

For Case2:  𝑙𝑙3 + 2 = even: 
  𝑥𝑥3(𝑘𝑘)/𝑏𝑏0 ≡ 𝐶𝐶0 + 𝐾𝐾3

0+𝛿𝛿(𝑘𝑘)−1
1−𝐾𝐾1

3 𝑘𝑘 + 𝐶𝐶2𝜌𝜌𝑘𝑘 +

𝐶𝐶3(−𝜌𝜌)𝑘𝑘 − ∑ 𝜌𝜌𝑘𝑘{𝐴𝐴𝑛𝑛𝐶𝐶𝐶𝐶𝐶𝐶(2𝜋𝜋𝜋𝜋𝜋𝜋
𝑙𝑙3+2

) +
𝑙𝑙3+2
2 −1

𝑛𝑛=1

𝐵𝐵𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆(2𝜋𝜋𝜋𝜋𝜋𝜋
𝑙𝑙3+2

)}     (7.9b)  with  𝜌𝜌 = (𝐾𝐾13)1/(𝑙𝑙3+2) .  
We get a stable solution for 𝐾𝐾30 = 1, with the same 
damping rate of  𝑂𝑂(𝜌𝜌)𝑘𝑘 , with the offset  term now 
becoming 𝐶𝐶0 + 𝐾𝐾3

0+𝛿𝛿(𝑘𝑘)−1
1−𝐾𝐾1

3 𝑘𝑘 . The offset can now be 
controlled by setting 𝛿𝛿(𝑘𝑘) to the appropriate 
sequence. For example, if it is desired to restore the 
inventory level within ‘n’ periods, the magnitude of 
recovery flow is set as: 𝛿𝛿(𝑘𝑘) = −𝐶𝐶0(1 − 𝐾𝐾13)/𝑛𝑛 , for 
0 < 𝑘𝑘 ≤ 𝑛𝑛 , and zero thereafter , i.e.  𝛿𝛿(𝑘𝑘) =
[−𝐶𝐶0(1 − 𝐾𝐾13)/𝑛𝑛]{1 − 𝐻𝐻(𝑘𝑘 − 𝑛𝑛)} , where H(.) is 
the unit Heaviside step function. This will pull up 
the inventory deviation to zero by the thn period in a 
smooth and uniform manner. 
The response is shown in Fig. 4 for n = 4 and 𝑙𝑙3 =
5. The inventory level is pulled up to (+)ve levels 
rapidly within 4 periods (or as designed by the 
planner), with total back-orders of -40 even for a 
high lag of 5 periods, and Lag-specific back-orders 
of 8 unit-periods per unit of lag, showing a good 
degree of responsiveness. The recovery time is as 
low as 10 periods even for a high lag of 5 periods, 
with a Lag-adjusted Recovery time of 5 periods only, 
showing rapid recovery (good recovery 
performance).   
The implied stock-out risk is also hence low. The 
limiting inventory variance is 20.54𝜎𝜎2. 
The managerial significance of this result is that the 
MA(ID) control scheme with a recovery flow could 
be built into the warehouse management system 
software, thereby achieving a good degree of in-
built responsiveness and recovery capability in the 
warehouse system.   
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8 Comparative Performance and 
Discussion    

We now present the comparative the performance of 
the above replenishment control policies at a glance 
in the tables below.  
 

Table 1 Comparative performance of different Replenishment Policies 
Sl 
 
No 

Type of 
Control 
 

 

Centre-
line of 
Osclln 
(Avg. Inv. 
Level) 

Ampl. of 
Osclln. 
(damping of 
Fluctuation) 

Trough/ 
Offset value  
(base stock 
Requirement
) 

Fracn. 
Of time 
in  
(-)ve 
Regn. 
(Stock-
out Risk) 

Lag-specific 
Back-Orders 
(Responsiveness
) 

Recovery 
Time and 
Limitation 
on control 
parameter 
Settings 
(Design 
Tractability) 
 

Remarks and 
max. lag  
tractable by 
elementary 
methods 

1 Proportional 
to Inventory 
deviations  
P(I)  

Very low 
(Fluctuate
s about a 
centre-line 
of  
−1/|𝐾𝐾3|, -
6.75 to -
1.65)  

For 

3K  : - 

0.619:  
Perpetual (ampl 
1.78) 
fluctuations  
) For 

3K  = 

-4/27: damping 
of k)67.0(  
 

Very low 
trough value: 
−1/|𝐾𝐾3|. 
For 13 =l
: 
-6.75 to -
1.65 
 
Can have 
high 
 (-)ve 
offset  
 
 
 

Entirely 
in (-)ve 
region, 
and high 
stock-out 
risk 

Infinite. 
Complete loss of 
control and very 
low 
responsiveness 

Infinite 
recovery 
time;  
For 13 =l
: 
Stability 
only for: 
−4/27 
< 𝐾𝐾3 < 

−0.619 𝑙𝑙3 =
2: 
−1/2 < 
𝐾𝐾3 < 0 

High Design 
Intractabilit
y beyond lag 
of 1 period 

Near 
perpetual 
high ampl. 
oscillations, 
OR 
High  
(-)ve 
Offset, 
Trade-off 
between 
offset and 
damping 
Very Slow 
Recovery; 
High design 
Intractabilit
y for lag 
beyond 1 
period 
 

 
2 
 
 
 
 

Proportional
-integral 
controls 
PI(I) 

(-)ve 
initially, 
and slowly 
pulled up 
to zero 

Low damping 
For 13 =l : 

@ k)79.0(  

For 23 =l : 

@ k)944.0(  
 
 

For 13 =l
: 
Trough of - 4 
 For 

23 =l : 

Trough of  
-6.85 
 
But has zero 
offset 

Entirely 
in (-)ve 
region 
(high 
stock-out 
risk) 

Fairly high for 
13 =l : 

-15 
High 
For 23 =l : 

-70 
 
  

Recovery 
Time: 25 for 
lag =1,  
33 for lag 
=2; 
High  
Design 
Intractabilit
y beyond lag 
of 2 periods 

Fluctuations 
damped out 
and system 
restored to 
its original 
state, but 
slowly; 
Slow 
Recovery; 
High Design 
intractability 
for lags 
beyond 2  

-8
-7
-6
-5
-4
-3
-2
-1
0
1
2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

In
ve

nt
or

y 
De

vi
at

io
n,

   
x(

k)

Time,   k

Fig. 4 MA-lag=5

MA(ID)-lag=5

MA(ID)-lim-pd-addl-flow-lag=5
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3 
 
 
 

Proportional
-integral-
derivative 
controls 
PID(I) 

 
-- do -- 

Low damping 
 For 13 =l : 

@ 
k)645.0(  

For 23 =l : 

Damping of 
k)725.0(  

 
 

Trough 
value: 
- 2  for 

13 =l , 

-8 for 
23 =l  

 
But has zero 
offset 
 

Entirely 
in (-)ve  
Region, 
(high-
stock-out 
risk) 

Fairly high for 
13 =l : 

-14 
 
High for 

23 =l : 

-39 
Low 
responsiveness 

Recovery 
Time: 16 for 
lag =1,  
35 for lag = 
2; 
High Design 
Intractabilit
y beyond lag 
of 2 periods 

 
-- do -- 

4 
 
 
 
 
 
 

Moving 
Average  
control 
MA(ID) 

Centre-
line (-)ve  

High damping , 
rate can be set 
to any desired 
value of  
(|𝐾𝐾31|)1/(𝑙𝑙3+2) 
Or  

�|𝐾𝐾31|
𝑙𝑙 +2

 

 
Trough value  
and  
(-)ve 
Offset of -
7.471  
for  

53 =l  

Entirely 
in 
(-)ve  
region 
 (High 
stock-out 
risk) 

Infinite. 
Complete loss of 
responsiveness 

Recovery 
Time is 
infinite; 
poor 
Recovery; 
But 
Lags of any 
high value 
can be 
handled. 
High Design 
Tractability 
for any high 
value of lag 

Fluctuations 
quickly 
damped out 
But system is 
left with a 
high (-)ve 
Offset; 
Poor 
Recovery,; 
but High 
Design 
Tractability 
for arbitrary 
large lags 
  

5 MA(ID) 
with 
recovery 
flow 

(-)ve 
initially, 
but can be 
pulled up 
optimally 
to above 
zero 

High damping, 
rate can be set 
to any desired 
value of  
(|𝐾𝐾31|)1/(𝑙𝑙3+2)O
r  

�|𝐾𝐾31|
𝑙𝑙 +2

 

Low trough 
value of -
7.471  
for  

53 =l , 

But Offset 
rapidly/ 
optimally 
pulled up to 
above zero 

Respons
e rapidly 
pulled up 
to above 
zero. 
Low 
stock-out 
risk 

Low, 8 for lag = 
5  
High degree of 
Responsiveness 

Recovery 
Time = 10 
even for 
high Lag 
=5; 
Lags of any 
high value 
can be 
handled. 
High Design 
Tractability 
for any high 
value of lag 

Fluctuations 
quickly 
damped out 
System 
restored to 
normalcy 
rapidly.  
Rapid 
Recovery; 
High design 
Tractability 
for 
arbitrarily 
large lags 

 
Table 2 Performance Summary and Operational Significance 

Sl. 
No 

Type of 
control 

Average 
inventory 
levels, 
And 
Permanent 
inventory 
levels 

Base stock 
Requirement 
(based on 
Trough 
value) 

Stock-
out Risk 
(time in  
(-)ve 
inv.) 

Rate of 
settling 
down 
(Damping 
Rate) 

Responsiveness 
(inverse 
relation with 
Lag-specific 
backorders) 

Special 
Characteristics/ 
Special Caution 

Recovery 
and 
Design 
Tractability 

1 Proportional 
to inventory 

Very low 
and below 
normal  
Operation 
levels 
(high 
Offset) 

 high High Near 
perpetual 
fluctuations,  
Settles 
down very 
slowly 

Very low, 
Complete loss 
of 
responsiveness  

Long lasting high 
amplitude 
oscillations,  
System is never 
restored to its 
original state, 
Trade-off 
between damping 
vs. base stock 
requirements and 
stock-out risk  

Very Slow 
Recovery; 
High Design 
Intractability 
beyond lag 
of 1 period 
 

2 Proportional-
integral  

 Low 
initially 
but pulled 
up to zero 
slowly 

High (7 
units) for lag 
of 2 periods 

High to 
moderate 

slow low Fluctuations 
damped out and 
system restored 
to its original 
state, but slowly 
 

Slow 
Recovery; 
High  Design 
Intractability 
beyond lag 
of 2 periods 

3 Proportional-
integral-
derivative  

 Low 
initially 
but pulled 
up to zero 
slowly 

 High (7 
units) for 
lags of 2 
periods 

 
moderate 
   

slow moderate Same as for PI 
control 
 (Sl. No 2  above)   

Same as for 
PI control 
 (Sl. No 2  
above)   

4 MA(ID) 
control 

Very low Very high high rapid Very low Fluctuations 
damped out 
rapidly, but 

Slow 
Recovery; 
but 
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system  not  
restored to  
original state, 
leaving inv level 
depleted 

High  Design 
Tractability 
for any high 
value of lag 

5 MA(ID) with 
recovery 
flow 

Low 
initially , 
but pulled 
up rapidly 
to zero 

Low even 
for large lag 
of 5 periods 

moderate rapid High Fluctuations 
damped out 
rapidly, system 
restored to 
normalcy 
rapidly/optimally 

Rapid 
Recovery 
AND 
High  Design 
Tractability 
for any high 
value of lag 

 
From the tables above, we can see that the MA(ID) 
control-with recovery flow shows the best 
performance. It shows a high degree of 
responsiveness and rapid recovery, as well as 
exhibits good design tractability even for arbitrarily 
large lags. The control scheme hence meets both our 
design stipulations, and hence could be the preferred 
form of replenishment control for a SC operating 
under large replenishment lags and uncertain 
demand conditions. 
In the SC, since the input flows into any unit in the 
chain would be the ‘demand’ (flows) for the 
preceding upstream units in the chain, maintaining 
stable inventory and replenishment flow levels at the 
warehouse would be fundamental to ensuring stable 
operation in the upstream units of the chain.  To this 
end, the MA(ID) control with recovery flow 
attempts to restore normalcy in a more uniform 
manner. This control scheme hence could be of good 
advantage to the SC operators.  
 
 
 
 
 
 
 

9. The Effect of Lag on System 
Performance and Discussion  
We now wish to examine specifically the effect of 
lag on system performance. We do this by 
comparing the performance of our system with two 
other closely related systems studied in the literature 
as under: 
a) One with the replenishment lag acting in isolation 
(a sudden increase in lag but in the absence of any 
demand disturbance. In such a situation, the 
disturbance would be caused entirely by the sudden 
increase in replenishment lag. Such a system has 
been modelled by taking the demand disturbance as 
zero, but making the lag in the system non-zero from 
the first period onwards (sudden increase in lag). 
b) One with the same step demand disturbance 
acting in isolation, i.e one with a demand 
disturbance as in our system, but with zero 
replenishment lag.  
The effect of these differences in the assumptions 
can be substantial as they affect the Initial 
Conditions (ICs) of the system equations, which in 
turn determine the magnitude of the system 
response, which can then become quite different.  
We show the comparison between them in Table 3 
below. 
 

Table 3 Comparative Performance of different controls on the three types of systems 
Sl 
No 

Control  
Type 

Performance 
 Metric  

System 1: Sudden Increase 
in Lag with Zero Demand 
Disturbance 
[31] 

System 2: Pre-existing 
Lags with Sudden 
Increase in Demand (This 
study) 

System 3: Zero Lag with 
Sudden Increase in Demand   
[32] 

1 P(I) Trough 
Value/Offset 

-2 for lag =1  -1.65 to -6.75 for lag = 1 -2  

  Amplitude of 
Oscillations 

1.1 units, perpetual 
oscillations 

up to 1.8 units, perpetual 
oscillations 

1.0 units perpetual oscillations 

  Damping   Max possible: 
kO )3/2( , low  

Max possible: 
kO )3/2( , low 

Max: kO )2/1( , moderate 

  Stock-out Risk Oscillatory Oscillatory, but  highest 
due to  highest amplitude 
fluctuations 

Oscillatory, 
but lowest due to lowest 
amplitude 

  Max Back-order 
posn./Lag-specific 
Back-orders 

Oscillatory between 
 -4 and 0 

Infinite, loss of 
Responsiveness 

Oscillatory between 
 -2 and 0 

  Inv. Variance   205.6 σ    low   205.6 σ    low  for 13 −=K : unbdd 

 274.3 σ for 4/13 −=K  

  Design Tractability 
for High Lag 

 Low beyond lag of one 
period 

Low beyond lag of one 
period 

Not Applicable 

  Stability Region  For lag = 1: 
 0619.0 3 <≤− K  

For lag = 1: 
 0619.0 3 <≤− K  

For zero lag: 
01 3 <≤− K  
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  Lag-adjusted 
Recovery Time  

23 for Lag = 1 
(Slow Recovery) 
Intractable for higher Lags 

Infinite (Very Slow 
Recovery) 

* Infinite (Very Slow 
Recovery) 
But  
Not Comparable 

2 PI(I) Trough Value -3 for lag = 1 
-4 for lag = 2 

-4 for lag = 1 
-6.85 for lag = 2 

- 2 for zero lag and unit step 
demand 

  Damping   kO )79.0(  for lag = 1 

  kO )94.0(  for lag = 2 

Same as for zero input 
case 
 

   kO )3/2(  for zero lag 
and unit step demand 

  Stock-out Risk Moderately high for lag = 
1 
very high for lag =2 

Highest  both for lag = 1 
and 2 

 (High)  

  Max. Back-order 
posn./ Lag-specific 
Back-orders 

-5   for lag = 1   low 
-126/-63 for lag = 2    

-30 for lag = 1        High 
-139/-70 for lag = 2    
Very High 

(- 11 for zero lag and unit step 
demand) 
  

  Inv. Variance  293.3 σ  for lag =1 
2181σ    for lag = 2 

Same as for zero input 
case  25.2 σ  for lag =0 and unit 

step demand 
  

  Design Tractability 
for High Lag 

Low for lag beyond 2 
periods 

Same as for zero input 
case 

Not Applicable 

  Lag-adjusted 
Recovery Time 

32 for Lag = 1 
50 for Lag =2 
(Slow Recovery) 

25 for lag = 1 
33 for Lag =2 
(Slow Recovery) 

* 23 for Lag = 0 
(Slow Recovery) 

3 PID(I) Trough Value -1 for lag = 1 
-3 for lag = 2 

-2 for lag = 1 
-8 for lag = 2 

-2.5 for zero lag and step 
demand 

  Damping kO )645.0( ,lag = 1 
kO )725.0( ,lag = 2 

Same as for zero input 
case 

kO )5.0(  for zero lag and 
unit step demand 

  S/O Risk High (entirely in (-)ve 
region 

High (entirely in (-)ve 
region 

High (entirely in (-)ve region 

  Max Back-order 
posn./ Lag-specific 
Back-order 

-4   for lag  = 1    Low 
-47/-24 for lag = 2     High   

-14   for lag = 1     High 
-116/-78 for lag = 2  Very 
High 

(-15 for zero lag and unit step 
demand) 
 

  Inv. Variance 4.16𝜎𝜎2 for lag =1 
15.6𝜎𝜎2 for lag = 2 

Same as for zero input 
case 

25.2 σ  for zero lag and unit 
step demand 
 

  Design Tractability 
for High Lag 

Low for lag beyond 2 
periods 

Low for lags beyond 2 
periods 

Not Applicable 

  Lag-adjusted 
Recovery Time  

22 for Lag = 1 
37 for Lag =2 
(Slow Recovery) 

16 for Lag =1 
33 for Lag =2 
(Slow Recovery) 

* 12 for Lag = 0 
(Moderately rapid Recovery) 

4 MA(ID) Trough/Offset -5.33  for lag = 5 -7.47  for lag =5 -2 for MA order = 3 
  Damping High,  𝑂𝑂((|𝐾𝐾31|1/(𝑙𝑙3+3))𝑘𝑘) , 

can be set to any desired 
value 

Same as for zero input 
case 

High krO ))1/(1( +  
kO )4/1( for MA order = 3 

  S/O Risk High (entirely in (-)ve 
region  

High (entirely in (-)ve 
region 

Low, inventory pulled up 
rapidly 

  Max. B/Orders 
/Lag-Specific B/O  

Infinite, loss of 
responsiveness 

Same as for zero input 
case 

-4   very low, and hence  very 
High Responsiveness 

  Inv. Variance Low, 254.20 σ  even 
for lag = 5 

Same as for zero input 
case * 210σ  for r = 3 (computed 

in Appendix) 
  Design Tractability 

for High Lag 
High for any arbitrary high 
lag 

High for any arbitrary 
high lag 

Not Applicable  

  Lag-adjusted 
Recovery Time 

Infinite 
  

Infinite * 5 for Lag =0 
(Rapid Recovery) 

5 MA(ID) Trough/Offset -5 for lag = 5 -7.47 for lag = 5 * Not Available in the 
Literature  

 with 
recovery 
flow 

Damping High,  𝑂𝑂((|𝐾𝐾31|1/(𝑙𝑙3+3))𝑘𝑘) , 
can be set to any desired 
value 

High,  𝑂𝑂((|𝐾𝐾31|1/(𝑙𝑙3+3))𝑘𝑘) , 
can be set to any desired 
value 

 
*Will be the same as for 
MA(ID) control 
 

  S/O Risk Low, Inv. pulled up 
rapidly  

Low, Inv. Pulled up 
rapidly 

 *Will be low 

  Max. B/O/ Lag-
Specific B/O 

Low, -19.18/-4, even for 
lag = 5 

Moderate, -40/-8 even for 
lag =5 

  *Will be low 

  Inv Variance Low, 254.20 σ  even 
for lag = 5 

Same as for zero input 
case 

 *Will be the same as for 
MA(ID) control 
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  Design Tractability 
for High Lag 

High for any arbitrary high 
lag 

High for any arbitrary 
high lag 

 Not Applicable 

  Lag-adjusted 
Recovery Time 

5 even for High Lag = 5 
(Rapid Recovery) 

5 even for High Lag = 5 
(Rapid Recovery) 

* Will be low 
(Rapid Recovery) 

 
(*Note1: The *starred entries for System 3 for 
Control No 5 are not reported in the literature, and 
have been arrived at by us from the reported results 
for system 3, using the logic of adding the recovery 
flow).   
Note 2: To ensure a valid comparison, we have taken 
system 1 with unit nominal flow profile, whose 
effects, under replenishment lags would be similar 
in magnitude to that of a unit step increase in 
demand without lags, thereby ensuring the 
numerical, order-of-magnitude, and logical validity 
of our comparison. 
The significant points that we can note from the 
comparisons are the following: 
1) Firstly, comparing all three systems, we can note:  
a)  All the performance metrics that are based on the 
LHS Operator term in the system LDE remain 
unchanged in all three cases, as can be expected; this 
is because the change in input and/or change in ICs, 
does not in any way affect the LHS Operator, which 
is a function of the type of control only. Hence, the 
following metrics remain unchanged: Damping rate, 
Inventory Variance, and Design Tractability.  
b) The other performance characteristics viz. Trough 
value, Offset, Stock-out risk, and Back-order 
position (Responsiveness), and Recovery time are 
affected by the ICs and demand disturbance (RHS 
of the LDE). 
2) We now compare the effect of pre-existing lags in 
the system (System 2 which is the one studied in our 
paper) with that of zero lag (System 3) for the same 
demand disturbance.  
Comparing Systems 2 and 3, we can note the 
deterioration in nearly all the performance metrics 
with the presence of lag in the system (for system 2, 
our study), with the extent of deterioration again 
increasing substantially with increase in lag. In 
particular, both the back-order position as well as 
Recovery Time deteriorate rapidly with increase in 
lag, leading to poor Responsiveness and Recovery. 
While this is certainly to be expected, the results 
above serve to measure and quantify the extent of 
deterioration with increase in lag.  
Moreover, for a responsive chain it is these latter 
performance metrics in (b) above that would be of 
greater importance, hence pointing to a substantial 
deterioration in Responsiveness and Recovery 
performance of the chain with increase in lags.  
3) Lastly, comparing systems 1 and 2: The 
Responsiveness and Recovery performance of 
system 2 (pre-existing lag with demand disturbance 
which is our system) is poorer for all types of 
controls than that of system 1(with no demand 
disturbance but a sudden increase in lag), thereby 
highlighting the increased difficulty in controlling 
the system in the presence of even pre-existing lags 

when also subject to demand disturbances (even if 
lags are pre-existing in the system).  
 
10. Managerial Implications 
The managerial implications of the results above are 
quite clear.  
First, if a SC operating under large replenishment 
lags and following a responsiveness strategy wishes 
to build-in a high degree of responsiveness and 
recovery capability in the face of sudden demand 
disturbances, it could benefit by adopting such 
dynamic controls, in particular the MA(ID) type of 
ordering controls with recovery flows.  
Second, if the system has large replenishment lags, 
it would be more difficult to control (as has been 
shown through the comparative analysis above) and 
hence would require closer monitoring and control. 
And it is precisely in such circumstances that the 
dynamic controls derived herein would 
automatically build-in a good degree of 
responsiveness and recovery capability in the 
system. Such systems would restore normalcy 
rapidly and automatically, and external human 
intervention could be limited to extreme cases.  
Third, and from the point of view of practice, these 
controls can be easily built into the Warehouse 
Management System software and can bring in a 
good degree of in-built responsiveness and recovery 
capability in automated warehouse operations. 
 
11.  Conclusion 
Warehouse replenishment management systems can 
be put to a severe test by the presence of large 
replenishment lags in the system when operating in 
uncertain demand environments. Such lags serve to 
magnify the disruptive effects of demand 
disturbances on the SC, resulting in poor 
responsiveness and slow recovery. Such systems 
could benefit by the use of dynamic controls as 
studied herein. Among the dynamic controls, the 
conventional P, PI, and PID controls show poor 
performance, exhibiting low damping, high stock-
out risk, low responsiveness and slow recovery. 
More importantly, they exhibit design intractability 
for lags beyond two periods. The MA(ID) control 
performs better with a high rate of damping but 
leaves the system with a large negative offset. 
Wherea, the MA(ID) control with recovery flow is 
able to pull up the inventory levels very quickly and 
thereby reduces both stock-out risks, as well as 
back-orders and recovery time, and thus exhibits a 
high degree of responsiveness and recovery. And 
most importantly, it exhibits a high degree of design 
tractability even for arbitrarily large lags.  
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Thus, when a responsive SC with large 
replenishment lags, operating in an environment of 
uncertain demand wishes to build-in good 
responsiveness and recovery capability, it could 
benefit from the use of such dynamic controls.  
Further the comparative results in the paper 
highlight and underscore the greater difficulty in 
controlling the system in the presence of even pre-
existing lags, and simultaneously also reinforce the 
utility of dynamic controls in such situations. 
The results derived herein have direct applications 
in warehouse management systems on the one hand 
and would also be of relevance in the study of SC 
Resilience on the other.   
A limitation of this study is that composite controls 
have not been studied herein, wherein one type of 
control is composed with another type, to exploit the 
advantages of each of the constituent controls in the 
composition. These point to directions for further 
work which could take up these and other such 
cases, which could further enhance the 
responsiveness and recovery performance of such 
SCs. 
Other approaches could be through empirical studies 
using such controls in field settings as also 
computational studies.  
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Appendix 
 
 Inventory Variance Computation for MA(ID) 
Control for Zero-lag and unit step demand  
(for the entry for System 3 in comparison Table 3 in 
section 9): 
The stochastic LDE is ([22]): 
[1 − 𝐿𝐿/(𝑟𝑟 + 1)]𝑟𝑟+1𝑥𝑥3(𝑘𝑘)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = −𝐾𝐾30𝜀𝜀(𝑘𝑘 − 2) −
𝜀𝜀(𝑘𝑘)    
Where the terms on the RHS are for the demand 
trigger term as well as the demand term given by :   
−𝐾𝐾30𝑟𝑟3(𝑘𝑘 − 1) − 𝑟𝑟3(𝑘𝑘 + 1)  in the original LDE. 
For r = 3 : we have 

[1 − (𝐿𝐿/4)]4𝑥𝑥3(𝑘𝑘)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = −𝐾𝐾30𝜀𝜀(𝑘𝑘 − 2) − 𝜀𝜀(𝑘𝑘) =
[1 − 𝐿𝐿 + (3/8)𝐿𝐿2 − (1/16)𝐿𝐿3 + (1/
256)𝐿𝐿4]𝑥𝑥3(𝑘𝑘)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠   
Since the LHS Operator is stable, using the infinite 
MA representation for the stochastic component 
([15]), yields: 

 
LHS Opr 
Term 

Coefft 
of 

)(kε  

Coefft of
)1( −kε  

Coefft of 
)2( −kε  

Coefft of 
)3( −kε  
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)4( −kε  
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)5( −kε  

Coefft of )(kε  

1     0β        1β        2β        3β        4β        5β        kβ     

- L     0β−        1β−        2β−        3β−        4β−        1−− kβ     
2)8/3( L+    

0)8/3( β     
1)8/3( β     2)8/3( β       3)8/3( β       2)8/3( −kβ        

3)16/1( L−         

0)16/1( β−  
    

1)16/1( β−  
    

2)16/1( β−  
    

3)16/1( −− kβ  
4)256/1( L+      

0256
1 β−    1256

1 β−    4256
1

−− kβ    

RHS - 1 0 0
3K−  

0 0 0 0 

 
Which yields: 𝛽𝛽0 = −1 = 𝛽𝛽1,𝛽𝛽2 = −5/8 −
𝐾𝐾30,𝛽𝛽3 = −5/16 − 𝐾𝐾30, and  
𝛽𝛽𝑘𝑘 − 𝛽𝛽𝑘𝑘−1 + (3/8)𝛽𝛽𝑘𝑘−2 − (1/16)𝛽𝛽𝑘𝑘−3 + (1/
256)𝛽𝛽𝑘𝑘−4 = 0, 𝑘𝑘 ≥ 4  , which has the solution as: 

𝛽𝛽𝑘𝑘 = (𝐶𝐶0 + 𝐶𝐶1𝑘𝑘 + 𝐶𝐶2𝑘𝑘2 + 𝐶𝐶3𝑘𝑘3)(1/4)𝑘𝑘   with the 
ICs as above. This yields the system of equations:

 

�

𝛽𝛽0
4𝛽𝛽1

16𝛽𝛽2
64𝛽𝛽3

� = �

−1
−4

−10 − 16𝐾𝐾30

−20 − 64𝐾𝐾30
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1 1 1 1
1 2 4 8
1 3 9 27

��

𝐶𝐶0
𝐶𝐶1
𝐶𝐶2
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−4
−34
−116

�  , which yields:   �

𝐶𝐶0
𝐶𝐶1
𝐶𝐶2
𝐶𝐶3

� = �

−1
2.667
−1

−4.1667

�      

 
Where the last equality is by substituting for 𝐾𝐾30 =
1.5. 
Hence the limiting inventory variance is given by: 
𝑙𝑙𝑙𝑙𝑙𝑙𝑘𝑘→∞ 𝑣𝑣𝑣𝑣𝑣𝑣( 𝑥𝑥3(𝑘𝑘)) = ∑ 𝛽𝛽𝑘𝑘2𝜎𝜎2∞

𝑘𝑘=0 = 𝜎𝜎2(1 + 1 +
(−2.125)2 + (−1.813)2 + ∑ 𝛽𝛽𝑘𝑘2∞

𝑘𝑘=4 ) , where 𝛽𝛽𝑘𝑘 =
(−1 − 2.667𝑘𝑘 − 𝑘𝑘2 − 4.167𝑘𝑘3)(1/4)𝑘𝑘, 𝑘𝑘 ≥ 4.  
The square of these terms is dominated by the last 
term: 4.1672𝑘𝑘6(1/16)𝑘𝑘 , which has a maximum at 
k = 3. Hence, we have, ∑ 𝛽𝛽𝑘𝑘2∞

𝑘𝑘=4 ≤ (17.36)36(1/
16)3(1/16)∑ (1/16)𝑙𝑙∞

𝑙𝑙=0 = (0.193)(16/15) =
0.21, and hence we have:  
𝑙𝑙𝑙𝑙𝑙𝑙𝑘𝑘→∞ 𝑣𝑣𝑣𝑣𝑣𝑣( 𝑥𝑥3(𝑘𝑘)) =  
= 𝜎𝜎2(1 + 1 + (−2.125)2 + (−1.813)2 + 0.21) =
10.01𝜎𝜎2 . 
 
 

 
 
 
 


