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Abstract = This study concerns the problem of finding 1. Finding shortest paths from one node to all

shortest paths in time-expanded networks by repeatiy othezr nlc:)szs_ Wheﬁ atrc I;angttf;]S afre nonnegatl\(;e to all
combining the source node’s nearest neighbor, time- - FInding shortest paths from one node 10 a

expanded network is derived from dynamic network G= other nodes for networks with arbitrary arc Iengths

(V,A,T) and contains one copy of the node set of the 3. Finding shortest paths from every node to
underlying ‘static’ network for each discrete time step every other node.
(building a time layer). we use node combination (8) 4. Various generalizations of the shortest path

method in networks which arc costs can vary with tne,
each arc has a transit time and parking with a
corresponding time-varying cost is allowed at the odes. .
The NC algorithm finds the shortest paths with three Time-dependent graphs are useful for real word
simple iterative steps: find the nearest neighbor fothe applications. A simple example is that of a compute
source node, combine that node with the source node communications network composed of dial up links
and modify the costs on arcs that connect to the aeest  each with its individual dialing schedules. Since
neighbor. The NC algorithm is more comprehensible delays depend on these predetermined schedules
and convenient for programming as there is no neetb . ’
maintain a set with the nodes’ distances. flndl_ng t_he b(_est route for a message_from source to
) destination involves the computation of time-
Keywords - shortest path, time-expanded ”etworksvdependent functions [2]. Many types of networks

problem.

node combination; Node Combination Algorithm exhibit this kind of dynamic behavior. This paper
] develops an algorithm to find the dynamic shortest
1. Introduction path from the source node to the sink node in &ycl

o networks with the following specifications. Congide
The problem of finding the shortest path betweem tw 5 network that represents a city with the usuah rus

nodes lies at the heart of network flows. It isiaflg  hoyr traffic patterns. The dynamic shortest path
to both researchers and to practitioners for sdaveraprob|em is a generalization of the shortest path

reasons(1l) they arise frequently in practice since in problem whose aim is to find a path of minimum cost
a wide variety of application settings we wish ¢md (length) through a network for which

some material(e.g., a computer data packet, & 1 Each arc hasteansit imewhich specifies the
telephone call, a vehicle) between two specifiedamount of time to traverse through each arc,

points in a network as quickly, as cheaply, or as 3 parking (or waiting) is permitted at the nodes

reliably as possible; (2) they are easy to solVeyt the network for later departure, and Network
efficiently; (3) as the simplest network modelseyth  characteristics such as arc transit times and ¢osts

capture many of the most salient core ingrediefts Olength) can change over time and are known for all
network flows and so they provide both a benchmark 5 ,es of time.

and a point of departure for studying more complex
network models; and (4) they arise frequently &s su The aim of this paper is to study the dynamic
problems when solving many combinatorial and shortest path problem in a discrete time settinip wi
network optimization problems. Even though shortestpositive transit times. We show that the problem is
path problems are relatively easy to solve, théegdes reduced to a classical shortest path problem am a s
and analysis of most efficient algorithms for sotyi  called time-expanded netwarkThis allows us to
them requires considerable ingenuity. apply algorithms that are available in the cladsica
Consequently, the study of shortest pathcase to the dynamic case. Then we use Node
problems is a natural starting point for introdgcin  Combination (NC) algorithm which introduced by
many key ideas from network flows, including the Xin Lu in 2011 to implement Dijkstra’s algorithm,
use of clever data structures and ideas such as datvith which the source node iteratively combines
scaling to improve the worst case algorithmic nodes into a new source node and updates the edge
performance [1]. Researchers have studied severaleights of the remaining node. When all of the ode
different types of (directed) shortest path protdem  in the connected component of the source node are
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finally combined into a single node, the shorteghp We assume that every pair of nodes is connected
from the source node to all other nodes are knownby at most one arc. Each arg |) € E has an
With the method of node combination, the process ofassociatedransit time4;; , if a vehicle leaves node
finding shortest paths is comparatively simple andat timet along the arci(j) then it arrives at nodeat
much more vivid than with Dijkstra’s algorithm [3].  time t + 4;;. we define a node-time pair to be a
The paper is organized as follows: After review member ofV x{0,1,...,T-1} A discrete-time dynamic
of the shortest path problem in Section 2, we @efin path from node-time pairi{ a) to node-time pairj(
necessary notation of the dynamic shortest pathp) is a sequence of distinct node-time paisP : (],
problem and Node Combination in Section 3, then wex) = (i, t), (i, &), . . ., &, &) = (], B), in which
use Node Combination (NC) algorithm for solving either (i , ixs1) € E and txs1= ti+Adix ,ixs1 , iN Which
this problem and summarize our conclusions thecase traffic leaves nodgfor nodei., at timet, and

related problems in Sect. 4, 5 respectively. arrives attyg, or iy = iy, in which case parking
occurs at nodg at the time stefy,;. Such a sequence
2. Literature Review is called adiscrete-time dynamic cycik(i, o) = (j, §)

and the other node-time pairs are distinct.

Shortest path algorithms have been a subject of Thecostof a dynamic pat® is defined by where
extensive research, resulting in a number ofc(t) is the traversal cost along aigj) at timet, and
algorithms for various conditions and constraidts [ fi(6) is the parking cost at nodet timet. A pathP
6]. Some algorithms that are based on dynamids said to be @ynamic shortest patfrom to node-
programming, zero-one programming and alsotime pair () to node-time pair |, B), if Cost [P] <
network flows theory can be found in [7]. Deo and Cost P for all dynamic path®’ from (i,a) to (j, ).
Pang [8] provided a taxonomy and annotation for theWe assume that the dynamic netwdkcontains a
shortest path algorithms. When arc lengths aredynamic path from node-time pair Q) to every
random variables, the problem will become moreother node-time pairi,(t) by introducing artificial
difficult. Martin found the distribution functionfo arcs (,i) joining node 1 to nodefor each node € V
shortest path and also the expected value of storte\{1}.
path in stochastic networks, in which the arc laagt Each artificial arc 1, i) has a zero transit time
are independent random variables with polynomialand a large traversal cost. It is clear that ndysarc
distribution functions, in the form of multiple would appear in a dynamic shortest path from0j1
integrals [9]. to any node-time paii,{) unless networks contains

Frank computed the probability that the time of no dynamic path from (@) to (,t) without artificial
the shortest path of the network is smaller than aarcs [17].
specific value [10]. He assumed that the arc length
are continuous random variables. Mirchandani2.1 Time-expanded Network
presented another method for obtaining the
distribution function of shortest path in stochasti Ford and Fulkerson introduce the notion of time-
networks [11]. It is not required to solve multiple expanded networks. A time-expanded network
integrals in this paper, but this method can orgy b contains one copy of the node set of the underlying
used for the special case where arc lengths arétatic’ network for each discrete time step (bintg
discrete random variables. a time layer). For a dynamic netwod< (V,A,T) the

Among the various shortest path algorithmstime expanded networks’= (V',A") is defined as
developed, Dijkstra’s algorithm is probably the mos follows: A time-expanded networkf G, denoted by
well-known. Though the efficiency and various G(p),where p={tot1,....t;} contains p+1 copies of
applications of Dijkstra’s algorithm have been ijde V, denoted by V, Vi,..., y ,in which Vg-1
studied [12], Dijkstra’s algorithm may not be egsil corresponds to the time step, forq=1, ..., p-1,
understood, especially when implementing theandVpto the time horizof.
labeling method [13].The general properties and  Subsequently, indeg varies from 1 top. The
algorithms have been discussed in both discrete timcopy of nodé € Vin Vg, is denoted by,.,. For each
and continuous time settings by Ahuja et al. [T28] arc (,j) € Eand each time,_;e¢ with O< tg-1+1;;<T,
et al. [15], Chabini [16] Orda and Rom [2] among Traversing through a(G.1, j; ) where ty = tg.1+4;;
others. corresponds to leaving nodat timet,.;and arriving

The problem considered in this paper is that of aat nodej at time t;. Hence, arc(ig1, jq ) has an
dynamic network, where the weights (costsXtC associated cost ; (t-1).
change as a function of time. Given a dynamic For each node, there is a holdover arc froiq,
networkG = (V, E, T)with discrete-time consists of a to iq. Traveling through arci{,, iy ) corresponds to
set of node¥, (V| = n), node se¢ ={1,2,...,n},a the parking at nodefrom timet,, tot;. So holdover
set of arcE, (E| = m),arc set ECV xVand afixed arc (41, iq ) has an associated coft (t;1). An
time horizonT eR".
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illustration of a timeexpanded network is given
Fig. 1.

£\
2/
) 6
\
\
\ \‘ | -\v
o
\
\
A

[

)
-
=X
=
&/
\

-
A
A\

—~ %\ o V= Ve
\l [ ‘\i/x ‘?/’/V\E? / "\h
39 2, ) (31 (a,
2/ = ANy A
G VN N N @
( (2 { & [
Qo) &/ o) (o

Figure 1. A network G with transit times on the a
is given a the left hand sic.
On the right sidecorresponding tirr-expanded
network G (p) with respect to the partitice is
depicted [18]

2.2 Node Combination

The fundamental idea of the NC algorithm is
combine nodes instead of maintaining the labe
sets in Dijkstra’salgorithm. Suppose that all nodes
the network are connected by ropes. The source
is placed in a pool, and other nodes are succep:
dragged into the pool one by one. Over time, tl
will be fewer and fewer nodes outside, and finally
nodeswill have been dragged into the pool. 1
combined nodes correspond to the set of sc
nodes whose distances have been establishe
Dijkstra’s algorithm. The adjacent neighbors of
combined node correspond to the set of pote
nodes from which th closest one is picked. In t
meantime, we can update the edge weights to
the distance labels from the source node, insté:

maintaining a vector of distances, making
procedure more comprehensiblé. [3
3. Node Combination Algorithm

Given a nonnegative timexpanded network ' =

(VT, E', C) with NT nodes let Gr.nr be the cost
matrix, node-time pair (1,0pe the source nodd be

the vector whose element df,tis to save the
distance between source ndidae pair (1,0) tc

node-time pair (i), then iterations of NC algorithi
can be described as follows:

Step Olnitialization . Set d(1,0)=0

Step 1Find the nearest neighbo. Select (1, 1) or
(i,t,) from the neighbors of (1,0), which mak

Cii(0)= min{ C(1,0)(1,1), C(1,0)(i)}. let d(i,t)=
C1i(0).

If there are no adjacent nodes to (, stop.

Step 2Combine nodes Delete (i) , V=V-(i,t,).
If V=0, stop.

Step 3Modify edge weights For each ar-time pair
((i.t,).(,t)), Update C(1,0)(i,t)=min{ C(1,0)(i.t) .
CLI(O)+C((i,t), (. tp)}

Go to Step 1.

Theorem 3.1NC algorithm solves the Sin¢-Source
Shortest Path problem in an increasing ordeid

(i,t,).

Theorem 3.2Given a Timeexpanded networG' =
(V', E', C) with nonnegative arc costs and a sot
node (1,0)e V', NC algorithm computes(i,t,) for
every (i,t) e V'.

For proofs these theorems reto [2].

4. Discussions

The NC algorithm can be easily implemented to
the shortest paths, not just the distar

Let pa,oyiu(1<i<NT) be the shortest path from
source nod@.,0) to node (i), Uw,0).w be the second
last node onpg gy TO recort Upgyiwy We can
declare a vectoP with length ofNT , and initialize
all the elements as(1,0). Ty 0y IS updated in Step

3(Cuoiw < Croiin Cown): setP (= (Ktb).

When the NC algorithm terminateP records the
information of shortest paths between and all
other nodes. To find the shortest path bet node-
time pair (1,0) and nodéme pair (i,,). We can trace
from P(j'tﬁ) sif U1,0)(j.1) =(k,tg) , than UL,0)( k)= P(
ki)« till
P (k0=(1,0).

The shortest path is:
(1,0)..... P(PCP(,tA)))..... P(P(,18)),P(.t5), (.tB)

5. Conclusions

In this paper we considered the dynamic shortast
problem, motivated by its applications in dynat
minimum cost flows. We showed that this probler
equivalent to a classical shortest path problera
so-called timeexpanded network. Using the I
algorithm, we found the shortest path by n
combination instead of by labeling operations.
difference between the NC algorithm and Dijksti
algorithm is, first, the set of visited (solved)des
whose distances have been established. In the
algorithm, nodes are combined into the new sol
node, which means that we need not maintain thi:
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Second, the relaxation is done on the arc cosfl6] Chabini, L.: Discrete dynamic shortest path

directly, which means that no additional memory or problems in transportation applications
CPU-cycles are needed to record the temporary = Complexity and  algorithms with optimal run
distances. Third, the NC algorithm is carried oyt b time. Transp. Res. Rec. 1645, 170-175 (1998).
repeatedly finding the source node’s nearesfl?] Abbasi. S Ibrahimnejad. S, Finding the

neighbor, which makes the process of finding Shortest  Path in Dynamic Network using

shortest paths more comprehensible and vivid. Node ~ Labeling Algorithm — International Journal of
combination makes the process of finding the skorte Business and Social Science,  Vol. 2 No. 20;

; ; November 2011.
th h traightf d, C h bl
gid Sm:;:gry_;?;;rr?ngs raightionvar, Lomprenenst e'[18] S. Mehdi Hashemi, Shaghayegh Mokarami,

Ebrahim Nasrabadi,Dynamic shortest path
problems with time-varying cost®ptim Lett

4,147-156(2010).
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