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Abstract— This paper presents a comparison of a variety of 
individual representations in a procedure based on the 
Genetic Algorithm for a capacitated model for supply chain 
network design (SCND) that considers the cost of quality 
(COQ) as well as the traditional manufacturing and 
distribution costs. The model is known as the SCND-COQ 
and can be used at a strategic planning level to maximize 
profit subject to meeting an overall quality level. The SCND-
COQ model internally computes quality costs for the whole 
supply chain considering the interdependencies among 
business entities, whereas previous works have assumed 
exogenously and independently given COQ functions 
(nonlinear functions). The SCND-COQ model is a 
constrained mixed-integer nonlinear programming problem 
(MINLP) which is challenging to solve because it combines 
all the difficulties of both of its subcategories: the 
combinatorial nature of mixed integer programming and the 
difficulty of solving non-convex nonlinear problems. The aim 
is to maximize the profit of the supply chain subject to: 
demand, capacity, flow balance, and overall quality level of 
the final product constraints. We provide a solution method 
based on the genetic algorithm (GA) for solving instances of 
practical and realistic size. We compare the performance of 
the GA with several individual representations and a greedy 
constructive heuristic procedure. Managerial insights for 
practitioners are provided and the results of computational 
testing are reported. 

 
Keywords—supply chain management, supply chain network 
design, Cost of Quality, genetic algorithm, genotype. 

 

1. Introduction 

This paper addresses the problem of supply chain 
network design (SCND). SCND involves selecting the 
business entities to include in the Supply Chain (SC). Cost 
of Quality (COQ) is a measurement system that translates 
poor quality into monetary terms.  

Although COQ has been applied mostly within 
companies, COQ should be applied as an external measure 
to integrate these costs into SCND modeling. Several 
studies have provided models to ensure quality in multi-

stage SC design [1]. Srivastava [2], who initiates 
estimating COQ in a SC, measures COQ in monetary 
terms at selected third-party contract manufacturing sites 
of a pharmaceutical company. Ramudhin et al. [3] also 
focus on integrating COQ in the SC. Their seminal study 
presents a mathematical formulation that integrates given 
COQ functions into the modeling of a SC network for a 
single-product, three-echelon system and seeks to 
minimize the overall operational and quality costs. More 
recently, Alzaman et al. [4] propose a model with an n 
level bill of materials that incorporates a known COQ 
quadratic function based on a defect ratio at all SC nodes. 
The COQ function is known and based on Juran’s original 
model [5]. Das [6] proposes a multi-stage global SC 
mathematical model for preventing recall risks. 

In previous studies, functions for the total COQ based 
on percentage of defective units are assumed to be given. 
This paper proposes a model that computes the COQ for a 
whole SC based on interdependencies among business 
entities and internal decisions within the manufacturing 
plant such as fraction defective at the manufacturing 
process and error rate at inspection. The only previous 
works that have addressed how the COQ curves can be 
computed by taking internal operational decisions within 
the SC are Castillo et al. [7]-[8], the model was named 
SC-COQ model. Two solution procedures were developed 
to solve the SC-COQ, one based on a local search 
algorithm (simulated annealing) and the other based on a 
population  algorithm (the genetic algorithm) [8]. The 
problem addressed here is to select the best combination 
of one or more suppliers, decide which plants of a given 
set to open, and select the best combination of one or more 
retailers in order to maximize the total profit and satisfy a 
minimum quality level for the final product, capacities at 
the business entities are considered in this model which is 
known as capacitated SCND-COQ model [9]. The 
capacitated SCND-COQ model is a more comprehensive 
model and a more challenging-to-solve problem. The 
number of constraints and decision variables increases 
exponentially as the problem size increases as well as the 
network possible configurations. Thus, the 
interrelationships among business entities become more 
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complex. The purpose of this paper is to compare and 
quantify the effect of different representations of a 
heuristic procedure based on the genetic algorithms and a 
global optimization solver. 

2. The Capacitated SCND-COQ Model 

The capacitated SCND-COQ model differs from the 
previous serial model in two main aspects: (1) several 
business entities can be selected at each echelon of the SC, 
(2) the components from all selected suppliers enter a 
plant and are mixed; thus, a shipment to a retailer contains 
products with components from different suppliers. This 
requires a pooled fraction defective from the selected 
suppliers to be computed. The main modeling assumptions 
are the following: 1) A consumer goods SC, consisting of 
three echelons: suppliers, manufacturers, and retailers, and 
a single product is modeled. 2) The overall quality level, 
QL, is sufficient to represent quality. 3) Suppliers and 
retailers are external to the plant and under separate 
management. 4) A 100% inspection is performed at the 
end of the manufacturing process to check product 
conformance. Inspection error is of type II. Type II error 
involves labeling a defective item as good and type I error 
involves classifying a good item as defective. Type I error 
is not considered in this model because is not detrimental 
to customer satisfaction. 5) All defective products are 
returned by customers and incur external failure costs. 6) 
Customer demand at each retailer (Demk) is known for the 
study period and retailers’ capacity is not considered. 7) 
Suppliers and manufacturing plants have finite capacity. 

The following sets are defined: I, set of suppliers 
( Ii ∈ ); J, set of manufacturing plants ( Jj ∈ ); K, set of 

retailers ( Kk∈ ). The model constants are: 
kDem , captured 

customer demand for retailer Kk∈ ; Capi, maximum 

capacity at supplier Ii ∈  for procuring components; Capj, 

maximum capacity at manufacturing plant Jj ∈  for the 

production of items; Ysi, fraction defective at supplier 

Ii ∈ ; Yrk, fraction defective at retailer Kk∈ ; pjk, price per 

product sold by manufacturing plant Jj ∈  to retailer 

Kk ∈ ; Pcij, direct cost of components shipped from 

supplier Ii ∈  to plant Jj ∈ ; Poij , production cost (base 

cost) for component from supplier Ii ∈  transformed at 

manufacturing plant Jj ∈ ; uij, cost of transporting one 

component from supplier Ii ∈  to plant Jj ∈ ; l jk, cost of 

transporting one item from plant Jj ∈  to retailer Kk ∈ ; 

Fj, fixed cost for operating manufacturing plant Jj ∈ , and 

∑∑=
i

ijij
i

ij wwYssY /
, pooled fraction defective of all suppliers 

shipping products to manufacturing plant Jj ∈ . The 

model variables are: yIj, inspection error rate at the output 
of  manufacturing plant Jj ∈ ; ypj, fraction defective at 

manufacturing plant Jj ∈ ; Zi, binary variable which 

equals 1 if supplier Ii ∈  is selected, zero otherwise; Rk, 

binary variable which equals 1 if retailer Kk ∈  is selected, 
zero otherwise; Pj, binary variable which equals 1 if plant 

Jj ∈  is opened, zero otherwise; sp
ijw , number of 

components shipped from supplier Ii ∈  to manufacturing 

plant Jj ∈ ; pr
jkw , number of components shipped from 

manufacturing plant Jj ∈  to retailer Kk∈ . 
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The first term of (1) is the sales revenue. The second 

term represents the total COQ for the network. A detailed 
explanation of the COQ term can be found in [8]. The 
parameters for the COQ function are shown in the 
Appendix. The third term represents the direct cost of 
acquiring components from the selected supplier(s) by the 
opened manufacturing plant(s). The fourth term represents 
processing cost for the components from selected 
supplier(s) at the opened plant(s). The fifth term gives the 
transportation cost from the supplier(s) to opened plant(s). 
The sixth term represents the transportation costs from the 
opened plant(s) to the retailer(s) and the seventh term 
determines the fixed cost for opening plants. Constraints 
(2) enforce that demand at retailers is not exceeded. 
Constraints (3) ensure that the number of components 
shipped from suppliers to manufacturing plants equals the 
number of items shipped from manufacturing plants to 
retailers. Constraints (4) ensure that the plant capacity (in 
units) is not exceeded. Constraints (5) enforce that the exit 
capacity (in units) at the suppliers is not exceeded.  
Constraints (6) enforce the desired quality level. 
Constraints (7)-(9) define feasible ranges and binary 
requirements for the model variables. 
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3. Solution Procedures 

The capacitated SCND-COQ model is a constrained 
mixed-integer nonlinear programming problem (MINLP) 
which is challenging to solve. Mixed integer programming 
(MIP) and nonlinear problems (NLP) are known as NP-
complete problems [10]; thus, solving MINLP problems 
can be a challenging task. Two heuristic procedures were 
developed: one based on the genetic algorithm with a 
global optimization solver and the second is a greedy 
constructive procedure with a global optimization solver. 

 

3.1 Genetic Algorithm-based procedure 
A genetic algorithm (GA) for solving the capacitated 

SCND-COQ model is described in this section. The GA 
procedure is based on the serial model [7]-[8]. The 
number of possible serial logistic routes is computed as 

KJI ×× . For instance, the number of serial routes for a 

problem involving 5 suppliers, 3 plants, and 5 retailers is 
75, which is considerably less than the number of possible 
network configurations. For instance, in a problem with 5 
suppliers, 3 plants, and 5 retailers, the total number of 
possible configurations is 6,727. 

The heuristic procedure based on the serial model can 
be divided into two stages and employs the idea that a 
network can be constructed by choosing a serial logistic 
route with the highest profit when sending the maximum 
possible flow of items through that route, adding that 
serial route to the network, updating the remaining 
capacities, and repeating the process. In order to find the 
best serial routes, at each iteration, the virtual gene 
Genetic Algorithm [11] was modified to address this 
problem. The heuristic procedure serves to construct a 
feasible network and to determine flows (Stage I). The GA 
finds the combination of business entities and a nonlinear 
solver, FMINCON available in MATLAB®, was used for 

finding the internal continuous variables (
jyI and jyp ) 

that minimize the COQ. In Stage II, we optimize the 
internal decision variables for the feasible network and 
flows found in Stage I by using the capacitated SCND-
COQ model formulation (Stage I uses the serial model). 
The profit achieved by this network is taken as the best-
found solution for the capacitated model. The procedure 
for the proposed solution method based on the genetic 
algorithm is illustrated as follows: 

Stage I: 
1.1 Create a list of all possible serial routes.  
1.2 Compute the quality level attained by each 
serial route, eliminate the routes that do not meet 
the minimum level in Eq.(6), and save a result 
matrix with all the feasible serial routes (PS 
matrix).  
1.3 Determine the maximum flow that can be sent 
through a route by evaluating the 
following: },,min{ kji DemCapCap .  

1.4 Prelocate the vector with not opened plants 
(NOP). Since the same plant can be selected in 
several serial routes (as long as the remaining 
plant’s capacity is greater than zero), this vector 
avoids taking into account the fixed cost for 
opening a plant more than once. 
1.5 The search for additional serial routes to be 
added to the network continues until one of the five 
following cases occurs: non-positive profit is 
obtained, the sum of the capacities of the suppliers 
is exhausted, the sum of the capacities of the plants 
is exhausted, the demand is satisfied, or there are 
no more feasible remaining routes to select from 
(the updated PS matrix is empty).   
1.5.1. The search is performed by using the GA-
based solution procedure for the serial SC-COQ 
model [8]. The GA-based procedure decides the 
binary variables (supplier, plant and retailer) while 
the internal decision variables (

jyI and 
jyp ) that 

minimize the total COQ are obtained by using a 
nonlinear solver, FMINCON with the interior-point 
algorithm of MATLAB® 
1.5.2. Update the remaining capacities and 
demands.  
1.5.3. One or more of these three cases may occur: 
one supplier is saturated, one plant is saturated, or 
the demand at one retailer is fully satisfied. In each 
case, the business entities that were saturated are 
eliminated from the set of potential business 
entities and all the routes that include these 
business entities are eliminated from the matrix 
with possible serial routes (PS matrix). 
1.5.3. Update the NOP vector each time a plant is 
selected. For instance, if the selected route contains 
a plant that was already opened in a previous 
iteration, then the additional fixed cost is zero; 
otherwise, if the plant is in the NOP vector, then a 
fixed cost is incurred for opening that plant. 
1.6 Store results. 
 
Stage II:  
The network with flows formed by adding serial 
routes is evaluated by using the capacitated SCND-
COQ model and the internal continuous variables 
are re-optimized. It is worth noting that the 
network and flows found in Stage I are not 
modified. 
2.1 Re-optimize the internal continuous variables 
associated with the opened manufacturing plants 
by using the GlobalSearch algorithm in 
MATLAB®.  

 
The solution procedure presented here combines GA 

(Stage I) and the GlobalSearch algorithm (Stage II), it was 
named SGA and was implemented using MATLAB®. In 
previous experimentation, it was observed that for some 
problems relationships between entities (supplier-plant, 
plant-retailer, or supplier-retailer) produced a significant 
overall increment on the population fitness, leading the 
algorithm to find the best solutions. Therefore, five 
different representations (genotype and phenotype 
representations for individuals) were developed and 
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compared: SGA_SPR, SGA_SP, SGA_SR, SGA_PR, and 
SGA_Ind. These representations were chosen in order to 
explore the non-linear relationships among entities and the 
impact of these representations on SGA performance.  

In the SGA_SPR representation all entities are linked. 
First, a matrix of possible solutions (PS matrix) that 
satisfy the minimum quality level is obtained. The PS 
matrix is structured in rows containing feasible 
combinations of entities. The combinations are generated 
starting at suppliers. See Figure 1. 

 

Figure 1. Mathematical Representation of the Search 
Space: Feasible Serial Routes.  

 

This representation consists of linked entities, i.e., rows 
of the PS matrix or feasible serial routes. A chromosome 
(or genotype), represented as a vector containing binary 
digits (base 2), is constructed. The Minimum Amount of 
Bits (MAB) required to completely represent all the rows 
of the PS matrix is obtained using the relation shown in 
Eq. (10) 

                        )
)2log(

)log(
(

Z
ceilMAB =                     (10) 

where the ceil function rounds the argument towards 
infinity and Z = SPR,  the size of the PS matrix (number 
of rows). The genotype is interpreted as a real number 
(phenotype) which is rounded to obtain a feasible solution. 
For example, the chromosome [00000…] represents the 
first row of PS and [11111…] represents the last row of 
PS. The main issue with this representation resides on the 
genetic linkage problem, which refers to the issue of 
finding and creating linkages between important genes in 
the chromosome in order to find the best solutions. As the 
size of the problem increases, the number of bits used to 
describe the genotype increases, thus incrementing the 
linkage issue [12]. Therefore, it is of interest to find 
individual representations that helps the GA to find 
interdependences of the most important bits forming the 
genotype. 

In a second representation, the SGA_SP representation, 
the supplier and plant are linked and the retailer is free. 
This representation considers a genotype containing two 
segments of binary digits. The first segment contains 
information about the connections between suppliers and 
plants and the last segment contains information about the 
retailers. Adding segments to the genotype representation 
provides the algorithm with an extra degree of freedom to 
explore the search space. Another benefit is the ability to 
set different crossover and mutation probabilities between 

segments. The first genotype segment is identical to the 
first representation (MAB) while the second segment 
contains MABR bits given by Eq. (11) with Z = #R, where 
#R is the number of retailers considered in the 
optimization problem. Note that MABR must be 
significantly lower than MAB. An example of the 
SGA_SP representation 
is: ]10111010[][ =→ RMABMABIndividual  

The base of the segments can be increased to reduce the 
number of  bits used but mutation may have to be 
increased to reduce cardinality issues. In this paper, binary 
chromosomes are used. In the case that the individual is 
not on the PS matrix, a penalty is performed by giving a 
value of zero to the objective function. The computational 
cost used to evaluate penalized individuals is almost 
negligible. 

In the SGA_SR representation the supplier and retailer 
are linked and the plant is free. The first segment contains 
information about the chosen supplier and retailer while 
the second segment contains information about the chosen 
plant. The number of bits required to represent the second 
segment MABP is given by Eq. (11) with Z = #P, where #P 
is the amount of plants considered in the optimization 
problem. Again MABP should be significantly lower than 
MAB. 

In the SGA_PR representation the plant and retailer are 
linked and the supplier is free. Following the same 
reasoning as before, the MABS can be computed using Eq. 
(11) with Z = #S, where #S is the number of suppliers 
considered. 

The SGA_Ind representation works with independent 
entities. Here, the genotype is represented by one vector 
containing three segments. Each segment contains the 
minimum amount of bits necessary to represent the 
amount of entities of each kind. The algorithm earns three 
degrees of freedom which result on a more flexible way to 
explore the solution space. 

3.2 Greedy constructive procedure for selecting 
serial routes 

For each serial route (rows in the possible serial routes 
matrix, that is, the PS matrix), the internal decision 
variables (

jyI and 
jyp )  that minimize the total COQ are 

obtained by using a nonlinear solver, FMINCON with the 
interior-point algorithm of MATLAB®. The total profit 
and the profit per unit sold are computed for each serial 
route. The profit per unit sold is used to select a serial 
route. This avoids selecting the route that generates the 
maximum profit based on volume. Ties are broken by 
selecting the route that yields a higher profit. 
The same two stages discussed before are applied for the 
greedy constructive procedure. The difference is that 
Stage I uses either the GA or the Greedy approach to 
select a serial route to be added to the network. Stage II 
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remains the same. The whole procedure, that is, the greedy 
constructive approach for the serial routes at each iteration 
and the GlobalSearch for optimizing the internal decision 
variables of the constructed network is named serial 
greedy constructive procedure (SGreedy) and was 
implemented using MATLAB®.   

4. Experimental Study 

4.1 Test Problems 

The data in test problems were generated randomly 
from a uniform distribution between the low and high 
levels documented in Table 1. The minimum required 
quality level (l) is fixed at 0.85 for all test instances. The 
interested reader can obtain the test problems from the 
authors. 

 
Table 1. Ranges of the parameters used to generate 

realistic instances. 

Input parameter Low level High Level 
Fraction defective at supplier (Ysi) 0.05 0.2 
Fraction defective at retailer (Yrk) 0.05 0.1 
Extra percentage (�����) in price (pjk) 1.2 1.3 
Procurement costs (Pcij) 50 120 
Production costs (Poij) 70 130 
Transportation costs: uij and l jk 3 12 
Fixed cost for opening manufacturing plants (Fj) 80,000 120,000 
Fixed costs: Afj,  Bfj, and Cfj 5,000 15,000 
Rework cost (Crj). 70 90 
Loss incurred owing to failure of purchased 
components (Csj) 

0.45 of average Pcij 
 

0.55 of average Pcij  

Variable cost for prevention activities (Avij) 1*Bvj 5* Bvj 
Variable cost for appraisal/inspection activities 
(Bvj) 

5 5 

Price per ‘sold as defective’ items (P*jk) 1/4pjk 3/4pjk 
Cost for computing Taguchi loss function for the 
network (Cost) 

1/10 1/3 

Cost per defective item (���) 1/4  of avg. price 1/2 of avg. price 

Demk,  Capi, and Capj 50,000 80,000 

  

Moreover, three classes of instances were developed. In 
Class I, the optimal solution is a serial route that satisfies 
all the demand at the selected retailers. This was 
accomplished by generating instances as described above 
but setting the extra percentage (extra) to 0.5 instead of 
the interval shown in Table 1 and performing the 
following modifications. Once the parameter values are 
generated from uniform distributions with ranges as 
shown in Table 1, some of the parameters associated with 
the entities in the optimal serial route (Z* will denote the 
optimal supplier, P* the optimal plant, and R* the optimal 
retailer) are modified in order to force the optimal solution 
to be a specific serial route. A ratio (β) set to 0.6 will be 
used to adjust the parameters of Z*, P*, and R* so that the 
cost parameters in these entities are significantly lower 
than the rest of the values of the cost parameters of other 
entities in order to make this specific serial route the 
optimal solution. The optimal business entities cost 
parameters are modified by taking the low level in the 
ranges in Table 1 and multiplying by β. In this way, the 
costs are (1-β)% less than the rest of the cost parameters. 

The fraction defective at the supplier and retailer are also 
decreased by (1-β)% for Z* and R*. The rework rate (

jφ ) 

is modified for P* by considering the maximum rework 
rate among all the plants and then dividing by 100. The 
demand at R* is set to the highest demand generated 
multiplied by (1+β). The capacities at Z* and P* are set 
such that they exactly match the demand at R*. The sales 
price is set to three times the maximum generated price. 
The price of ‘sold as defective’ items of P* is computed as 
the sales price multiplied by the high level of *

jkP  in the 

range shown in Table 1. The resulting instances are 
verified by enumerating and evaluating all the possible 
serial routes to make sure that the serial route with Z*, P* 
and R* is the optimal solution; otherwise, the instances 
that do not have the Z*-P*-R* route as optimal solution 
are not used for testing. 

For Class II problem instances, the opening of all the 
business entities to satisfy the demand at retailers is 
expected. This was accomplished by increasing the price 
of the final items and modifying capacities so that the 
retailers limit the flow. The parameter values are 
randomly generated from uniform distributions with 
ranges as shown in Table 1. However, the price for Class 
II problems ranges from 1.9 to 2. The sum of the 
randomly generated retailer capacities 

kDem  is multiplied 

by 1.1 and divided between the number of suppliers to 
obtain the capacity at each supplier. This calculation is 
repeated for plants. Thus, the suppliers and plants have 
enough capacity to satisfy the demand at retailers. For 
Class III problem instances, the parameter values are 
randomly generated from uniform distributions with 
ranges as shown in Table 1; thus, the optimal network is 
unknown. 

4.2 Parameters’ Tuning and Effect of 
Representations 

A statistical design of experiment was conducted as a 
preliminary numerical study to explore the impact of the 
representation on the performance of the SGA for 
problems of considerably size (35 suppliers, 20 
manufacturing plants and 35 retailers) and to provide 
guidance about the values of SGA’s parameters. The SGA 
parameters are: initial population (pop), number of 
generations (gen), probability of mutation (pm), and 
probability of crossover (pc). Additional to the algorithm’s 
parameters, the five different representations were 
considered in the design. The selected design is a general 
full factorial with two blocks (each block solved a 
different instance, that is, block one solved an instance 
from Class II and the second block solved an instance 
from Class III). The factors and levels are as follows. 
Representations (5 levels: SGA_SPR, SGA_SP, SGA_PR, 
SGA_SR, and SGA_Ind), pop as a percentage of the PS 
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matrix (3 levels: 0.2%, 0.5%, and 0.8%), gen (3 levels: 5, 
15, and 25), pm (3 levels: 0.02, 0.1, and 0.4), and pc (3 
levels: 0.70, 0.85, and 0.98). In total 810 runs were 
generated, that is, a 35×20×35 size problem was 
repeatedly solved with different combination of factors’ 
levels. Model adequacy checking on residuals did not 
show issues with the normality test and the constant 
variance assumption. The Analysis of Variance (ANOVA) 
shown in Table 2 indicates that the blocks, 
representations, initial population and number of 
generations are statistically significant while the 
probability of mutation and crossover are not statistically 

significant with α=0.1. Taking as a response the CPU time 
that takes to solve the instance, the representations are not 
significant but the representations are significant when 
taking the number of evaluations and the total COQ as 
responses. 

Table 2. ANOVA for profit as response. 
Analysis of Variance for Profit, using Adjusted SS for Tests 
 
Source      DF       Seq SS       Adj SS       Adj MS           F      P 
Blocks       1  9.86237E+19  9.86237E+19  9.86237E+19  4500355.17  0.000 
Rep          4  6.34825E+14  6.34825E+14  1.58706E+14        7.24  0.000 
Pop          2  1.95248E+15  1.95248E+15  9.76238E+14       44.55  0.000 
Gen          2  2.60941E+15  2.60941E+15  1.30471E+15       59.54  0.000 
Mut          2  2.63678E+13  2.63678E+13  1.31839E+13        0.60  0.548 
Cross        2  9.62946E+13  9.62946E+13  4.81473E+13        2.20  0.112 
Rep*Pop      8  2.05797E+14  2.05797E+14  2.57247E+13        1.17  0.312 
Rep*Gen      8  1.24414E+14  1.24414E+14  1.55518E+13        0.71  0.683 
Rep*Mut      8  2.52916E+14  2.52916E+14  3.16145E+13        1.44  0.175 
Rep*Cross    8  2.83328E+14  2.83328E+14  3.54159E+13        1.62  0.116 
Pop*Gen      4  1.13861E+15  1.13861E+15  2.84653E+14       12.99  0.000 
Pop*Mut      4  8.65987E+13  8.65987E+13  2.16497E+13        0.99  0.413 
Pop*Cross    4  1.08889E+14  1.08889E+14  2.72223E+13        1.24  0.292 
Gen*Mut      4  5.82533E+13  5.82533E+13  1.45633E+13        0.66  0.617 
Gen*Cross    4  8.52757E+13  8.52757E+13  2.13189E+13        0.97  0.422 
Mut*Cross    4  2.56476E+14  2.56476E+14  6.41191E+13        2.93  0.020 
Error      740  1.62168E+16  1.62168E+16  2.19147E+13 
Total      809  9.86479E+19 
 
 
S = 4681309   R-Sq = 99.98%   R-Sq(adj) = 99.98%  

 
The main effect plots for the overall profit shown in 

Figure 2 shows that the representations that yield higher 
profit are SGA_SP, SGA_PR, and SGA_Ind. The 
SGA_SPR and SGA_SP representations have the worst 
performance. 
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Figure 2. Main Effect Plot for Profit as response. 

 
Since the different representations are statistically 

significant in the ANOVA, a computational study is 
conducted by solving a variety test instances from 
different classes. The algorithm’s parameters were fixed 
based on the main effect plot. The effectiveness of the 

crossover probability dictates the rate of convergence, 
while the mutation probability helps the GA to avoid a 
premature convergence and helps it to escape from local 
solution. In general, the mutation probability should be 
low and the crossover high. Since there is no statistical 
evidence that the crossover and mutation probabilities 
increase the profit, the mutation was fixed in the lowest 
level and the crossover in 0.95. Regarding the number of 
generations and initial population, it can be observed in 
Figure 2 that the higher the values of the pop and gen, the 
greater the profit. However, a trade-off between the 
computation time and the values for pop and gen exists; 
thus, the pop was fixed in 0.5% (approximately 122 
individuals for the size of the problem tested) and the gen 
was fixed in 15. It is recommended to adjust the pop and 
gen depending on the size of the problem while the 
crossover and mutation probabilities may remain the same 
regardless of the size of the problem. 

In order to compare the performance of the various 
representations against optimal solutions, we randomly 
generated five instances from specially constructed 
instances (Class I described before) where the optimal 
solution is known in advance. Additionally, five instances 
from each class where the optimal solution is not known 
(Class II and III) were randomly generated. The pool of 
test instances consists of 45 problems for a 35×20×35 
problem size. This problem size has 145 constraints and 
1,530 decision variables.  

5. Computational Results 

A comparison of the SGA representations and SGreedy 
relative to each other was performed. Performance was 
measured by solution quality, number of evaluations of 
the objective function, and computational time in CPU 
seconds. Solution quality is characterized in two ways: (a) 
the average best-found profit (Avg_Profit) over 5 
instances obtained by each solution procedure, and (b) the 
average percentage deviation from the optimal solution for 
Class I and from the best-found solution for classes II and 
III (Avg%dev) over the same 5 instances. The deviation at 
each instance is computed as [(optimal solution-
Avg_Profit)/optimal solution)]×100% for Class I and as 
[(best found solution-Avg_Profit)/best found solution)] 
×100%  for classes II and III. For SGreedy, the serial route 
with the highest unit profit from all possible serial routes 
is the one added to the network, at each iteration. For 
SGA, at each iteration, the serial logistic route with the 
best-found profit in 3 runs is the one added to the network. 
The final network configuration is evaluated in the 
capacitated model and the re-optimization of the internal 
continuous variables is performed; the profit obtained by 
this network is the one reported. 

The average number of evaluations of the objective 
function over 5 instances (Avg_Evals) is also considered 



Int. J Sup. Chain. Mgt    Vol. 2, No. 3, September 2013 

 

23 

as a performance measure. For the SGreedy and SGA 
procedures, the number of evaluations is computed as the 
sum of the number of evaluations performed by the 
heuristic procedure when constructing the network and the 
number of evaluations performed by the GlobalSearch to 
re-optimize the internal continuous variables for the 
capacitated model. 

Finally, the average computational time (Avg_Time) is 
the average processing time duration in CPU seconds that 
is required for each solution procedure over 5 instances. 
The computational time considers the entire solution 
procedure, i.e., Stage I and Stage II (including the multiple 
runs performed in the case of the SGA). The computer 
used for the computational experiments was a Sager 
NP8130 with Intel® i7TM 2720QM operating at 3.3 GHz, 
with 16 GB of memory DDR3 on an Intel HM65 chipset 
motherboard. Table 3 shows the results.  

As expected, the SGreedy method outperforms the GA-
based procedures for Class I problems because the optimal 
solution is a single route. However, it is interesting to note 
that the maximum deviation is 6.44% which is reasonable 
due to the size and problem’s complexity. The SGA_PR 
representation yields the best performance among the 
representations. The SGreedy performs approximately 68 
times more evaluations than the SGAs and it requires 1.72 
times more computational effort. For Class II problems, 
the SGA_PR has the smallest deviation from best found 
solutions. Noteworthy, for difficult problem classes with 
network solutions such as Class II and Class III, the 
maximum average deviation from the best found solution 
is 1% and 1.67%, respectively. For Class III instances, the 
SGreedy yields the best found profit, follow by SGA_PR 
and SGA_Ind. 

6.  Managerial Implications 

The computational experience confirms the 
observations from the design of experiments. In section 
4.2 was noticed that the best solutions where obtained 
with the SGA_PR, SGA_Ind and SGA_SR 
representations. Linking all the business entities does not 
help the algorithm in making an efficient search of the 
solution space and while linking the plants and retailers 
increases the profit achieved, linking the supplier and 
plant does not perform well. Based on the results form 
section 5, for all test problems, the algorithms can be 
ranked based on the average profit as follows: SGA_PR, 
SGreedy, SGA_Ind, SGA_SR, SGA_SP, SGA_SPR. 

These results indicate (1) that increasing the flexibility 
of the representation improves the performance of the 
genetic algorithm for a capacitated supply chain network 
design with quality costs and constraints and (2) that 
relationships between contiguous entities have a 
measurable impact on the profit attained by the SGA 
procedure. The strongest relationship is the manufacturing 
plant and retailer (downstream of the supply chain); thus, 
a very good solution may depend on finding good 
combinations of plants and retailers. The practitioner can 
use the SCND-COQ model and the SGA_PR solution 
procedure to find a supply chain network design that 
maximizes overall profit while maintaining the highest 
possible quality of the final product at minimum Cost of 
Quality.  

 
Table 3. Results for problem size 35×20×35. 

     SGreedy  SGA_SPR SGA_SP  SGA_ SR SGA_PR   SGA_Ind  

Class 
I 

Avg_Profit   59,724,004.15    57,808,706.54    58,062,379.54    55,933,398.30    58,524,862.65    57,087,459.85  

Avg%dev                     0.16                      3.45                      2.93                      6.44                      2.12                      4.55  

Avg_Evals     4,509,049.80            52,121.60            60,285.00            62,068.80            64,705.80            66,082.00  

Avg_Time             3,663.56                 849.38              1,162.19              2,128.04              1,262.12              1,667.85  

                

Class 
II 

Avg_Profit   981,487,545.86    978,690,227.10    980,378,709.44    984,544,155.94    986,013,996.63    983,533,295.26  

Avg%dev                       0.73                        1.00                        0.84                        0.42                        0.26                        0.51  

Avg_Evals     19,184,769.80            627,077.60            665,050.60            695,397.60            680,551.00            637,319.40  

Avg_Time             14,677.11              16,920.93              23,014.04              23,237.46              23,096.04              17,572.59  

                

Class 
III 

Avg_Profit   309,497,478.07    305,423,869.33    305,647,671.16    307,016,925.68    308,000,850.95    307,773,417.99  

Avg%dev                       0.11                        1.41                        1.34                        0.90                        0.59                        0.67  

Avg_Evals     14,115,188.60            380,910.20            405,316.80            405,361.20            395,740.00            376,995.40  

Avg_Time             10,590.83              10,372.47              14,684.33              14,917.53                9,907.69              10,860.13  
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7. Conclusions and Future Research 

This paper presented an application of the genetic 
algorithm to a capacitated SCND problem. Several 
individual representations were tested and the top 
performers were identified. The test results indicate that 
the individual representation has a measurable effect on 
the performance of the SGA. The proposed solution 
procedure found good solutions for large problems. Using 
the SCND-COQ model and the solution procedure based 
on the genetic algorithm (SGA) allows the modeling of 
business entities with limited capacity and can assist 
organizations in improving their profitability and quality 
simultaneously when designing a supply chain network at 
a strategic level.  

Future research involves the development of heuristic 
solution methods that are not based on adding serial 
supply chain lines to the network at each iteration but in 
optimizing the network flows directly. The heuristics 
could be based on metaheuristic procedures such as 
Genetic Algorithms, GRASP, Scatter Search, and 
Simulated Annealing, among others. Another future work 
includes extending the model to include more levels in the 
supply chain. This would involve extending the COQ 
modeling to include these additional echelons.  
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Appendix 
 
Parameters for the COQ function: 

 

Afj: fixed cost for prevention activities at manufacturing 
plant j∈J. 
Avi: variable cost for prevention activities implemented by 
supplier i∈I. 
Avj: variable cost for prevention activities implemented by 
plant j∈J. 
Avij: variable cost for combined prevention activities at 
supplier i∈I and manufacturing plant j∈J. 
Bfj: fixed cost of inspection at manufacturing plant j∈J. 
Bvj: variable cost of inspection at manufacturing plant 
j∈J.  
Cfj: fixed cost for internal failure cost at manufacturing 
plant j∈J.  
Csj: loss incurred due to failure of components procured 
from supplier to meet quality requirements at 
manufacturing plant j∈J. 
Crj: rework cost per defective item at manufacturing plant 
j∈J. 

jC : cost per defective item associated with repair or 

replacement of the product at manufacturing plant j∈J. 

jφ : rework rate at manufacturing plant j∈J.  

l : loss coefficient for the Taguchi loss function associated 
with the cost of working at the specification imit (for the 
whole network) and the width of the specification, that is, 

)/()100/( LbUbCost − . 

P* jk: price per ‘sold as defective’ item sold by 
manufacturing plant j to retailer. 
 
 
 

 


