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Abstract— This paper presents a comparison of a variety of
individual representations in a procedure based onthe
Genetic Algorithm for a capacitated model for suppy chain
network design (SCND) that considers the cost of auity
(COQ) as well as the traditional manufacturing and
distribution costs. The model is known as the SCNZOQ
and can be used at a strategic planning level to menize
profit subject to meeting an overall quality level.The SCND-
COQ model internally computes quality costs for thewhole
supply chain considering the interdependencies amgn
business entities, whereas previous works have assed
exogenously and independently given COQ functions
(nonlinear functions). The SCND-COQ model is a
constrained mixed-integer nonlinear programming prdlem
(MINLP) which is challenging to solve because it ¢obines
all the difficulties of both of its subcategories: the
combinatorial nature of mixed integer programming and the
difficulty of solving non-convex nonlinear problems The aim
is to maximize the profit of the supply chain subjet to:
demand, capacity, flow balance, and overall qualityevel of
the final product constraints. We provide a solutim method
based on the genetic algorithm (GA) for solving insnces of
practical and realistic size. We compare the perfanance of
the GA with several individual representations anda greedy
constructive heuristic procedure. Managerial insiglts for
practitioners are provided and the results of comptational
testing are reported.

Keywords—supply chain managemensupply chain network
design, Cost of Quality, genetic algorithm, genetyp

1. Introduction

This paper addresses the problem of supply chain
network design (SCND). SCND involves selecting the
business entities to include in the Supply Chai@)(£ost
of Quality (COQ) is a measurement system that lates
poor quality into monetary terms.

Although COQ has been applied mostly within
companies, COQ should be applied as an externaurea
to integrate these costs into SCND modeling. Sévera
studies have provided models to ensure quality utim
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stage SC design [1]. Srivastava [2], who initiates
estimating COQ in a SC, measures COQ in monetary
terms at selected third-party contract manufactusites
of a pharmaceutical company. Ramudhin et al. [3pal
focus on integrating COQ in the SC. Their semirtatig
presents a mathematical formulation that integrgtesn
COQ functions into the modeling of a SC network #or
single-product, three-echelon system and seeks to
minimize the overall operational and quality codtkre
recently, Alzaman et al. [4] propose a model withra
level bill of materials that incorporates a knowi©@
guadratic function based on a defect ratio at @lin®des.
The COQ function is known and based on Juran’sraig
model [5]. Das [6] proposes a multi-stage global SC
mathematical model for preventing recall risks.

In previous studies, functions for the total COCdxh
on percentage of defective units are assumed wivies.
This paper proposes a model that computes the QO f
whole SC based on interdependencies among business
entities and internal decisions within the manufeog
plant such as fraction defective at the manufacturi
process and error rate at inspection. The only ipusv
works that have addressed how the COQ curves can be
computed by taking internal operational decisionthiw
the SC are Castillo et al. [7]-[8], the model wasmed
SC-COQ model. Two solution procedures were develope
to solve the SC-COQ, one based on a local search
algorithm (simulated annealing) and the other basee
population algorithm (the genetic algorithm) [8]he
problem addressed here is to select the best caidyin
of one or more suppliers, decide which plants gfiven
set to open, and select the best combination oboneore
retailers in order to maximize the total profit agatisfy a
minimum quality level for the final product, captes at
the business entities are considered in this metalh is
known as capacitated SCND-COQ model [9]. The
capacitated SCND-COQ model is a more comprehensive
model and a more challenging-to-solve problem. The
number of constraints and decision variables irsgea
exponentially as the problem size increases as agelhe
network possible configurations. Thus, the
interrelationships among business entities becormee m
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complex. The purpose of this paper is to compam an
quantify the effect of different representations af
heuristic procedure based on the genetic algoritanadsa
global optimization solver.

2. The Capacitated SCND-COQ Model

The capacitated SCND-COQ model differs from the
previous serial model in two main aspects: (1) sdve
business entities can be selected at each echietba §C,
(2) the components from all selected suppliers reate
plant and are mixed; thus, a shipment to a retadetains
products with components from different suppliefkis
requires a pooled fraction defective from the deléc
suppliers to be computed. The main modeling assonmgpt
are the following: 1) A consumer goods SC, consisbf
three echelons: suppliers, manufacturers, andeetaand
a single product is modeled. 2) The overall qudttyel,
QL, is sufficient to represent quality. 3) Suppliersd
retailers are external to the plant and under sépar
management. 4) A 100% inspection is performed at th
end of the manufacturing process to check product
conformance. Inspection error is of type Il. Typesiror
involves labeling a defective item as good and typeor
involves classifying a good item as defective. TYeeror
is not considered in this model because is noirdetrtal
to customer satisfaction. 5) All defective produete
returned by customers and incur external failuretdo)
Customer demand at each retaileef) is known for the
study period and retailers’ capacity is not consde 7)
Suppliers and manufacturing plants have finite cipa

The following sets are defined; set of suppliers
(idl); J, set of manufacturing plantsj0J); K, set of

retailers OK). The model constants arpem , captured
customer demand for retailekOk; Cap, maximum
capacity at supplierdl for procuring component§ag,

maximum capacity at manufacturing plapflJ for the

production of items;Ys, fraction defective at supplier
i1 ; Yr, fraction defective at retailedK ; py, price per
product sold by manufacturing plantJJ to retailer

kOK; Pg, direct cost of components shipped from
supplieridl to plant j0J; Pg;, production cost (base
cost) for component from suppliafd| transformed at
manufacturing plantjog; u;, cost of transporting one
component from supplier01 to plant jO0J; lj, cost of
transporting one item from plantgy to retailerk 0K ;

F;, fixed cost for operating manufacturing plajit J , and

Vs =S vew 1S pooled fraction defective of all suppliers

shipping products to manufacturing plantgy. The

model variables argl;, inspection error rate at the output
of manufacturing plantjgJ; yp, fraction defective at

manufacturing plantjdJ; Z, binary variable which

equals 1 if supplieidl is selected, zero otherwisg,
binary variable which equals 1 if retaileO0K is selected,
zero otherwiseP;, binary variable which equals 1 if plant

j0J is opened, zero otherwiseW.,”, number of
components shipped from supplier] | to manufacturing
plant jOJ; ijkr, number of components shipped from

manufacturing plant 0 J to retailerk 0K .
The problem is to maximize profit:

2, 2 wj P PR ~COQW W Y1,.¥P, 2., R) - (1)
ZZWUSPPQJ ZP —ZZW”SPPO” Zp -
ZZWUS”U\;ZPJ _Zzwlﬁfllk PR _ZFIPI
subject to:
D wi < DemR,; k0K &)
i
SwP=>wh;0i0d ®3)
i k
> wP<CapP;00J (4)
> w® <Capz;0i O (5)
j
QL, =1 R;0OkOK (6)
O<yl, <%0j0J (7
0<yp <10j0J (8)
z,P,R O{01} 0i 01,0 0J,0kOK 9)

The first term of (1) is the sales revenue. Theosdc
term represents the total COQ for the network. faitkd
explanation of the COQ term can be found in [8]eTh
parameters for the COQ function are shown in the
Appendix. The third term represents the direct cafst
acquiring components from the selected supplidrysthe
opened manufacturing plant(s). The fourth termesents
processing cost for the components from selected
supplier(s) at the opened plant(s). The fifth tegjines the
transportation cost from the supplier(s) to opepladt(s).
The sixth term represents the transportation dosts the
opened plant(s) to the retailer(s) and the seveetm
determines the fixed cost for opening plants. Qairgis
(2) enforce that demand at retailers is not exagede
Constraints (3) ensure that the number of companent
shipped from suppliers to manufacturing plants eqtre
number of items shipped from manufacturing plamts t
retailers. Constraints (4) ensure that the plapaciy (in
units) is not exceeded. Constraints (5) enforcettiaexit
capacity (in units) at the suppliers is not exceede
Constraints (6) enforce the desired quality level.
Constraints (7)-(9) define feasible ranges and rlgina
requirements for the model variables.
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3. Solution Procedures

The capacitated SCND-COQ model is a constrained
mixed-integer nonlinear programming problem (MINLP)
which is challenging to solve. Mixed integer pragraing
(MIP) and nonlinear problems (NLP) are known as NP-
complete problems [10]; thus, solving MINLP probkem
can be a challenging task. Two heuristic procedue®
developed: one based on the genetic algorithm waith
global optimization solver and the second is a dyee
constructive procedure with a global optimizatioiver.

3.1 Genetic Algorithm-based procedure

A genetic algorithm (GA) for solving the capacitite
SCND-COQ model is described in this section. The GA
procedure is based on the serial model [7]-[8]. The
number of possible serial logistic routes is corapuas
‘l‘x“]‘x‘K‘. For instance, the number of serial routes for a

problem involving 5 suppliers, 3 plants, and 5 iteta is
75, which is considerably less than the numberossible
network configurations. For instance, in a probleith 5
suppliers, 3 plants, and 5 retailers, the total memof
possible configurations is 6,727.

The heuristic procedure based on the serial maaiel c
be divided into two stages and employs the ide& &ha
network can be constructed by choosing a seridktiog
route with the highest profit when sending the nmaxin
possible flow of items through that route, addifmtt
serial route to the network, updating the remaining
capacities, and repeating the process. In ordéndothe
best serial routes, at each iteration, the virtgahe
Genetic Algorithm [11] was modified to address this
problem. The heuristic procedure serves to constauc
feasible network and to determine flows (Stag& e GA
finds the combination of business entities and @inear
solver, FMINCON available in MATLAB®, was used for
finding the internal continuous variableyi(and yp,)

that minimize the COQ. In Stage Il, we optimize the
internal decision variables for the feasible netwand
flows found in Stage | by using the capacitated SEN
COQ model formulation (Stage | uses the serial Mode
The profit achieved by this network is taken as liest-
found solution for the capacitated model. The pdoce
for the proposed solution method based on the genet
algorithm is illustrated as follows:

Stage I:

1.1 Create a list of all possible serial routes.

1.2 Compute the quality level attained by each

serial route, eliminate the routes that do not meet

the minimum level in Eq.(6), and save a result

matrix with all the feasible serial routeS

matrix).

1.3 Determine the maximum flow that can be sent

through a route by evaluating the

following: min{cap ,Cap,,Dem} -

1.4 Prelocate the vector with not opened plants
(NOP). Since the same plant can be selected in
several serial routes (as long as the remaining
plant's capacity is greater than zero), this vector
avoids taking into account the fixed cost for
opening a plant more than once.

1.5 The search for additional serial routes to be
added to the network continues until one of the fiv
following cases occurs: non-positive profit is
obtained, the sum of the capacities of the supplier
is exhausted, the sum of the capacities of thetplan
is exhausted, the demand is satisfied, or there are
no more feasible remaining routes to select from
(the updatedPS matrix is empty).

1.5.1. The search is performed by using the GA-
based solution procedure for the serial SC-COQ
model [8]. The GA-based procedure decides the
binary variables (supplier, plant and retailer) lehi
the internal decision variableg/l(j and ypj) that

minimize the total COQ are obtained by using a
nonlinear solver, FMINCON with the interior-point
algorithm of MATLAB®

1.5.2. Update the remaining capacities and
demands.

1.5.3. One or more of these three cases may occur:
one supplier is saturated, one plant is saturated,
the demand at one retailer is fully satisfied. &cte
case, the business entities that were saturated are
eliminated from the set of potential business
entites and all the routes that include these
business entities are eliminated from the matrix
with possible serial route®8 matrix).

1.5.3. Update the NOP vector each time a plant is
selected. For instance, if the selected route amhta

a plant that was already opened in a previous
iteration, then the additional fixed cost is zero;
otherwise, if the plant is in the NOP vector, tleen
fixed cost is incurred for opening that plant.

1.6 Store results.

Stage Il:

The network with flows formed by adding serial
routes is evaluated by using the capacitated SCND-
COQ model and the internal continuous variables
are re-optimized. It is worth noting that the
network and flows found in Stage | are not
modified.

2.1 Re-optimize the internal continuous variables
associated with the opened manufacturing plants
by wusing the GlobalSearch algorithm in
MATLAB®.

The solution procedure presented here combines GA
(Stage 1) and the GlobalSearch algorithm (Stagetiyas
named SGA and was implemented using MATLAB®. In
previous experimentation, it was observed thatstmme
problems relationships between entities (supplianyp
plant-retailer, or supplier-retailer) produced gn#icant
overall increment on the population fitness, legdthe
algorithm to find the best solutions. Thereforeyefi
different representations (genotype and phenotype
representations for individuals) were developed and
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compared: SGA_SPR, SGA_SP, SGA_SR, SGA_PR, and
SGA_Ind. These representations were chosen in ¢doder
explore the non-linear relationships among entéied the
impact of these representations on SGA performance.

In the SGA_SPR representation all entities areelihk
First, a matrix of possible solution®$ matrix) that
satisfy the minimum quality level is obtained. TR&
matrix is structured in rows containing feasible
combinations of entities. The combinations are cee
starting at suppliers. See Figure 1.
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Figure 1. Mathematical Representation of the Search
Space: Feasible Serial Routes.

This representation consists of linked entities, irows
of the PS matrix or feasible serial routes. A chromosome
(or genotype), represented as a vector containingryp
digits (base 2), is constructed. The Minimum Amoaht
Bits (MAB) required to completely represent all the rows
of the PS matrix is obtained using the relation shown in
Eqg. (10)

MAB = ceil(1292)) (10)

log(2)

where the ceil function rounds the argument towards
infinity and Z = SPR, the size of tl&S matrix (number
of rows). The genotype is interpreted as a real bam
(phenotype) which is rounded to obtain a feasiblatn.
For example, the chromosome [00000...] represents the
first row of PSand [11111...] represents the last row of
PS The main issue with this representation residethe
genetic linkage problem, which refers to the issie
finding and creating linkages between importantegeim
the chromosome in order to find the best solutiérssthe
size of the problem increases, the number of lEeduo
describe the genotype increases, thus incremertiag
linkage issue [12]. Therefore, it is of interest find
individual representations that helps the GA todfin
interdependences of the most important bits formihey
genotype.

In a second representation, the SGA_SP represamtati
the supplier and plant are linked and the retageifree.
This representation considers a genotype contaitvireg
segments of binary digits. The first segment costai
information about the connections between suppberds
plants and the last segment contains informatiautthe
retailers. Adding segments to the genotype reptasen
provides the algorithm with an extra degree ofdm®a to
explore the search space. Another benefit is thilgyato
set different crossover and mutation probabilibesveen

segments. The first genotype segment is identwahé
first representation MAB) while the second segment
containsMABg bits given by Eqg. (11) with Z = #R, where
#R is the number of retailers considered in the
optimization problem. Note thatMABgz must be
significantly lower than MAB. An example of the
SGA_SP representation
is: Individual -~ [MAB  MAB,]=[11010 101

The base of the segments can be increased to rétice
number of bits used but mutation may have to be
increased to reduce cardinality issues. In thispdgnary
chromosomes are used. In the case that the individu
not on thePS matrix, a penalty is performed by giving a
value of zero to the objective function. The conagional
cost used to evaluate penalized individuals is atmo
negligible.

In the SGA_SR representation the supplier andleetai
are linked and the plant is free. The first segnoemtains
information about the chosen supplier and retailbile
the second segment contains information aboutlibsen
plant. The number of bits required to representséeond
segmenMAB:; is given by Eq. (11) with Z = #P, where #P
is the amount of plants considered in the optindrat
problem. AgainMABe should be significantly lower than
MAB.

In the SGA_PR representation the plant and retailer
linked and the supplier is free. Following the same
reasoning as before, th&ABs can be computed using Eq.
(11) with Z = #S, where #S is the number of supglie
considered.

The SGA_Ind representation works with independent
entities. Here, the genotype is represented bywveéor
containing three segments. Each segment contams th
minimum amount of bits necessary to represent the
amount of entities of each kind. The algorithm eahree
degrees of freedom which result on a more flexidgy to
explore the solution space.

3.2 Greedy constructive procedure for selecting
serial routes

For each serial route (rows in the possible seaates
matrix, that is, thePS matrix), the internal decision
variables {1, and yp,) that minimize the total COQ are

obtained by using a nonlinear solver, FMINCON wtttle
interior-point algorithm of MATLAB®. The total prdf
and the profit per unit sold are computed for esehal
route. The profit per unit sold is used to selectesial
route. This avoids selecting the route that gepserde
maximum profit based on volume. Ties are broken by
selecting the route that yields a higher profit.

The same two stages discussed before are appligtieo
greedy constructive procedure. The difference iat th
Stage | uses either the GA or the Greedy approach t
select a serial route to be added to the netwadgeSl|
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remains the same. The whole procedure, that igyrésedy
constructive approach for the serial routes at éacation

and the GlobalSearch for optimizing the internatisien
variables of the constructed network is named keria
greedy constructive procedure (SGreedy) and was
implemented using MATLAB®.

4.  Experimental Study

41 Test Problems

The data in test problems were generated randomly
from a uniform distribution between the low and Hig
levels documented in Table 1. The minimum required
quality level {) is fixed at 0.85 for all test instances. The
interested reader can obtain the test problems fiwn
authors.

Table 1. Ranges of the parameters used to generate
realistic instances.

Input paramett Low leve

Fraction defective at supplieYs) 0.0% 0.2

High Leve

Fraction defective at retaileYx) 0.05 0.1
Extra percentageftra) in price fy) 12 1.2
Procurement costPc;) 5C 12C
Production costsPg;) 7C 13C
Transportation costu; andlj 3 12

Fixed cost for opening manufacturing plarF;) 80,00( 120,00(
Fixed costsAf,, Bf,, anc Cf; 5,00C 15,00C
Rework costCr)). 7C 90

Loss incurred owing to failure of purchas 0.45 of averagPg; 0.55 of averagPc;
componentsEs)

Variable cost for prevention activitieAy;) 1*By 5* By
Variable cost for appraisal/inspection activit 5 5

(Bv)

Price per ‘sold as defective’ itemB*{) 1/4pk 3l4py
Cost for computing Taguchi loss function for 1/1¢C 1/3
network Cos)

Cost per defective itenfp 1/4 of avg. pric 1/2 of avg. pric

Dem,, Cap, andCag 50,00( 80,00(

Moreover, three classes of instances were develdped
Class I, the optimal solution is a serial routet thettisfies
all the demand at the selected retailers. This was
accomplished by generating instances as describedea
but setting the extra percentagext(a) to 0.5 instead of
the interval shown in Table 1 and performing the
following modifications. Once the parameter valaes
generated from uniform distributions with ranges as
shown in Table 1, some of the parameters assocmtbd
the entities in the optimal serial route (Z* wikkbte the
optimal supplier, P* the optimal plant, and R* ihgtimal
retailer) are modified in order to force the optirsalution
to be a specific serial route. A ratip) (set to 0.6 will be
used to adjust the parameters of Z*, P*, and Rthst the
cost parameters in these entities are significalayer
than the rest of the values of the cost parameteosher
entities in order to make this specific serial eouhe
optimal solution. The optimal business entities tcos
parameters are modified by taking the low leveltlie
ranges in Table 1 and multiplying iy In this way, the
costs are (B)% less than the rest of the cost parameters.

The fraction defective at the supplier and retadlier also
decreased by ()% for Z* and R*. The rework rate#)

is modified for P* by considering the maximum rewor
rate among all the plants and then dividing by 1Dite
demand at R* is set to the highest demand generated
multiplied by (14). The capacities at Z* and P* are set
such that they exactly match the demand at R*. Seles
price is set to three times the maximum generatex.p
The price of ‘sold as defective’ items of P* is quuted as

the sales price multiplied by the high level |ng in the

range shown in Table 1. The resulting instances are
verified by enumerating and evaluating all the faes
serial routes to make sure that the serial routk @i, P*

and R* is the optimal solution; otherwise, the amstes
that do not have the Z*-P*-R* route as optimal o

are not used for testing.

For Class Il problem instances, the opening oftfel
business entities to satisfy the demand at regailsr
expected. This was accomplished by increasing thoe p
of the final items and modifying capacities so tltiat
retailers limit the flow. The parameter values are
randomly generated from uniform distributions with
ranges as shown in Table 1. However, the price&Cfass
Il problems ranges from 1.9 to 2. The sum of the
randomly generated retailer capacitsm, is multiplied

by 1.1 and divided between the number of suppliers
obtain the capacity at each supplier. This calatats
repeated for plants. Thus, the suppliers and plhatse
enough capacity to satisfy the demand at retailEcs.
Class Il problem instances, the parameter values a
randomly generated from uniform distributions with
ranges as shown in Table 1; thus, the optimal ndtigo
unknown.

4.2 Parameters’ Tuning and Effect of

Representations

A statistical design of experiment was conducted as
preliminary numerical study to explore the impattie
representation on the performance of the SGA for
problems of considerably size (35 suppliers, 20
manufacturing plants and 35 retailers) and to pl@vi
guidance about the values of SGA’s parameters.SIh&
parameters are: initial populationpo), number of
generations der), probability of mutation gm), and
probability of crossovermpg). Additional to the algorithm’s
parameters, the five different representations were
considered in the design. The selected designgsnaral
full factorial with two blocks (each block solved a
different instance, that is, block one solved astance
from Class Il and the second block solved an irstan
from Class Ill). The factors and levels are asdioB.
Representations (5 levels: SGA_SPR, SGA_SP, SGA_PR,
SGA_SR, and SGA_Indpop as a percentage of tiS
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matrix (3 levels: 0.2%, 0.5%, and 0.8%gn (3 levels: 5,

15, and 25)pm (3 levels: 0.02, 0.1, and 0.4), apd (3
levels: 0.70, 0.85, and 0.98). In total 810 runsrewe
generated, that is, a 35x20x35 size problem was
repeatedly solved with different combination of ttas’
levels. Model adequacy checking on residuals ditl no
show issues with the normality test and the constan
variance assumption. The Analysis of Variance (ANQV

shown in Table 2 indicates that the blocks,
representations, initial population and number of
generations are statistically significant while the

probability of mutation and crossover are not staally
significant witha=0.1. Taking as a response the CPU time
that takes to solve the instance, the representatice not
significant but the representations are significaiten
taking the number of evaluations and the total C&Q
responses.

Table 2. ANOVA for profit as response.

Anal ysis of Variance for Profit, using Adjusted SS for Tests

Sour ce DF Seq SS Adj SS Adj M F P
Bl ocks 1 9.86237E+19 9.86237E+19 9.86237E+19 4500355.17 0.000
Rep 4 6.34825E+14 6.34825E+14 1.58706E+14 7.24 0.000
Pop 2 1.95248E+15 1.95248E+15 9.76238E+14 44,55 0.000
Gen 2 2.60941E+15 2.60941E+15 1.30471E+15 59.54 0.000
Mt 2 2.63678E+13 2.63678E+13 1.31839E+13 0.60 0.548
Cross 2 9.62946E+13 9.62946E+13 4.81473E+13 2.20 0.112
Rep* Pop 8 2.05797E+14 2.05797E+14 2.57247E+13 1.17 0.312
Rep* Gen 8 1.24414E+14 1.24414E+14 1.55518E+13 0.71 0.683
Rep* Mut 8 2.52916E+14 2.52916E+14 3.16145E+13 1.44 0.175
Rep*Cross 8 2.83328E+14 2.83328E+14 3.54159E+13 1.62 0.116
Pop* Gen 4 1.13861E+15 1.13861E+15 2.84653E+14 12.99 0.000
Pop* Mut 4 8.65987E+13 8.65987E+13 2. 16497E+13 0.99 0.413
Pop*Cross 4 1.08889E+14 1.08889E+14 2.72223E+13 1.24 0.292
Gen*Mut 4 5.82533E+13 5.82533E+13 1.45633E+13 0.66 0.617
Gen*Cross 4 8.52757E+13 8.52757E+13 2.13189E+13 0.97 0.422
Mt *Cr oss 4 2.56476E+14 2.56476E+14 6.41191E+13 2.93 0.020
Error 740 1.62168E+16 1.62168E+16 2.19147E+13

Tot al 809 9.86479E+19

S = 4681309 R Sq = 99.98% R-Sg(adj) = 99.98%

The main effect plots for the overall profit shoum
Figure 2 shows that the representations that yieitier
profit are SGA_SP, SGA_PR, and SGA_Ind. The
SGA_SPR and SGA_SP representations have the worst
performance.

Main Effects Plot for Profit
Data Means

Rep Pop Gen
657000000
656000000 /—/ /’/"
655000000-] .5‘\\‘///
654000000-
c
H 7 T T T T T
] SPR_SP_SR PR Ind 0.2 0.5 08 5 15 2
= Mut Cross
657000000
656000000-]
o /\1
sssoo0o00-|  © -
654000000-|
653000000-]

Figure 2. Main Effect Plot for Profit as response.

Since the different representations are statiyical
significant in the ANOVA, a computational study is
conducted by solving a variety test instances from
different classes. The algorithm’s parameters vibwed
based on the main effect plot. The effectivenesshef

crossover probability dictates the rate of convecge
while the mutation probability helps the GA to av@a
premature convergence and helps it to escape fooal |
solution. In general, the mutation probability skiobe
low and the crossover high. Since there is no stici
evidence that the crossover and mutation probisilit
increase the profit, the mutation was fixed in tbeest
level and the crossover in 0.95. Regarding the raurnob
generations and initial population, it can be obesdrin
Figure 2 that the higher the values of pup andgen the
greater the profit. However, a trade-off betweem th
computation time and the values foop and gen exists;
thus, thepop was fixed in 0.5% (approximately 122
individuals for the size of the problem tested) émelgen
was fixed in 15. It is recommended to adjust plog and
gen depending on the size of the problem while the
crossover and mutation probabilities may remainstae
regardless of the size of the problem.

In order to compare the performance of the various
representations against optimal solutions, we rargo
generated five instances from specially constructed
instances (Class | described before) where themapti
solution is known in advance. Additionally, fivestances
from each class where the optimal solution is rmaivikn
(Class Il and Ill) were randomly generated. Thelpafo
test instances consists of 45 problems for a 35320x
problem size. This problem size has 145 constrants
1,530 decision variables.

5. Computational Results

A comparison of the SGA representations and SGreedy
relative to each other was performed. Performanas w
measured by solution quality, number of evaluatiohs
the objective function, and computational time iFP\LC
seconds. Solution quality is characterized in tvaysv (a)
the average best-found profit (Avg_Profit) over 5
instances obtained by each solution procedure(@nthe
average percentage deviation from the optimal &widbr
Class | and from the best-found solution for cladseand
Il (Avg%dev) over the same 5 instances. The dewiaat
each instance is computed as [(optimal solution-
Avg_Profit)/optimal solution)]x100% for Class | arab
[(best found solution-Avg_Profit)/best found sodurt)]
x100% for classes Il and Ill. For SGreedy, théaseoute
with the highest unit profit from all possible sgrioutes
is the one added to the network, at each iteratir.
SGA, at each iteration, the serial logistic routihvihe
best-found profit in 3 runs is the one added tontéievork.
The final network configuration is evaluated in the
capacitated model and the re-optimization of theriral
continuous variables is performed; the profit aftai by
this network is the one reported.

The average number of evaluations of the objective
function over 5 instances (Avg_Evals) is also cdesed
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as a performance measure. For the SGreedy and SGA g

procedures, the number of evaluations is computetthe
sum of the number of evaluations performed by the
heuristic procedure when constructing the netwoid the
number of evaluations performed by the GlobalSe&och
re-optimize the internal continuous variables fdre t
capacitated model.

Finally, the average computational time (Avg_Tinee)
the average processing time duration in CPU secthrads
is required for each solution procedure over Sainces.
The computational time considers the entire sotutio
procedure, i.e., Stage | and Stage Il (includiregrttultiple
runs performed in the case of the SGA). The compute
used for the computational experiments was a Sager
NP8130 with Intel® i7" 2720QM operating at 3.3 GHz,
with 16 GB of memory DDR3 on an Intel HM65 chipset
motherboard. Table 3 shows the results.

As expected, the SGreedy method outperforms the GA-
based procedures for Class | problems becausepthread
solution is a single route. However, it is intei@gtto note
that the maximum deviation is 6.44% which is readie
due to the size and problem’s complexity. The SGRA_P
representation yields the best performance amowrg th
representations. The SGreedy performs approxim&@ly
times more evaluations than the SGAs and it reguiré2
times more computational effort. For Class Il pevbs,
the SGA PR has the smallest deviation from besbhdou
solutions. Noteworthy, for difficult problem class&ith
network solutions such as Class Il and Class He t
maximum average deviation from the best found &wiut
is 1% and 1.67%, respectively. For Class Il insts) the
SGreedy yields the best found profit, follow by SGR
and SGA_Ind.

Managerial Implications

The computational experience confirms the
observations from the design of experiments. Irticec
4.2 was noticed that the best solutions where obthi
with  the SGA_PR, SGA_Ind and SGA_SR
representations. Linking all the business entitiess not
help the algorithm in making an efficient searchtloé
solution space and while linking the plants anditets
increases the profit achieved, linking the suppkerd
plant does not perform well. Based on the resudtenf
section 5, for all test problems, the algorithms dze
ranked based on the average profit as follows: S&3_
SGreedy, SGA_Ind, SGA_SR, SGA_SP, SGA_SPR.

These results indicate (1) that increasing theilfléty
of the representation improves the performancehef t
genetic algorithm for a capacitated supply chaitwpnek
design with quality costs and constraints and (2t t
relationships between contiguous entities have a
measurable impact on the profit attained by the SGA
procedure. The strongest relationship is the maurfimg
plant and retailer (downstream of the supply chaim)s,

a very good solution may depend on finding good
combinations of plants and retailers. The practéiocan
use the SCND-COQ model and the SGA_PR solution
procedure to find a supply chain network designt tha
maximizes overall profit while maintaining the hegt
possible quality of the final product at minimum SC@f
Quality.

Table 3. Results for problem size 35x20x35.

SGA_SR SGA_PR SGA_Ind

SGreedy SGA_SPR SGA_SP
Avg_Profit 59,724,004.15 57,808,706.54 58,062,379.54
Class  Avg%dev 0.16 3.45 2.93
! Avg_Evals 4,509,049.80 52,121.60 60,285.00
Avg_Time 3,663.56 849.38 1,162.19
Avg_Profit 981,487,545.86 978,690,227.10 980,378,709.44
Class  Avg%dev 0.73 1.00 0.84
" Avg_Evals 19,184,769.80 627,077.60 665,050.60
Avg_Time 14,677.11 16,920.93 23,014.04
Avg_Profit 309,497,478.07 305,423,869.33 305,647,671.16
Class  Avg%dev 0.11 141 1.34
. Avg_Evals 14,115,188.60 380,910.20 405,316.80
Avg_Time 10,590.83 10,372.47 14,684.33

55,933,398.30
6.44
62,068.80
2,128.04

984,544,155.94
0.42

695,397.60
23,237.46

307,016,925.68
0.90

405,361.20

14,917.53

58,524,862.65
212

64,705.80

1,262.12

986,013,996.63
0.26

680,551.00
23,096.04

308,000,850.95
0.59

395,740.00

9,907.69

57,087,459.85
4.55

66,082.00

1,667.85

983,533,295.26
0.51

637,319.40

17,572.59

307,773,417.99
0.67

376,995.40

10,860.13
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7. Conclusions and Future Research

This paper presented an application of the genetic
algorithm to a capacitated SCND problem. Several
individual representations were tested and the top
performers were identified. The test results indictnat
the individual representation has a measurablectefia
the performance of the SGA. The proposed solution
procedure found good solutions for large probleldsing
the SCND-COQ model and the solution procedure based
on the genetic algorithm (SGA) allows the modelofg
business entities with limited capacity and canisass
organizations in improving their profitability anguality
simultaneously when designing a supply chain netvedr
a strategic level.

Future research involves the development of héwrist
solution methods that are not based on adding Iseria
supply chain lines to the network at each iteratiom in
optimizing the network flows directly. The heurcsti
could be based on metaheuristic procedures such as
Genetic Algorithms, GRASP, Scatter Search, and
Simulated Annealing, among others. Another futuoekv
includes extending the model to include more leirekhe
supply chain. This would involve extending the COQ
modeling to include these additional echelons.
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Appendix

Parametersfor the COQ function:

Af;: fixed cost for prevention activities at manufaiig
plantjJ.

Av. variable cost for prevention activities implemenisd
supplieri 1.

Avy;: variable cost for prevention activities implenshby
plantjJ.

Avy;: variable cost for combined prevention activitiats
supplieriJl and manufacturing plapilJ.

Bf;. fixed cost of inspection at manufacturing plpat.

Bv: variable cost of inspection at manufacturing plan
jod.

Cf;: fixed cost for internal failure cost at manufautg
plantjJ.

Cs: loss incurred due to failure of components procured
from supplier to meet quality requirements at
manufacturing plarjtt]J.

Cr;: rework cost per defective item at manufacturingnpla
jod.

C,: cost per defective item associated with repair or
replacement of the product at manufacturing pjlaht

@ rework rate at manufacturing plgmntJ.

i : loss coefficient for the Taguchi loss function asated
with the cost of working at the specification in(fior the
whole network) and the width of the specificatitmat is,
(Cost/10Q /(Ub-Lb).

P*i: price per ‘sold as defective’
manufacturing plarjtto retailer.

item sold by



