Uncertainty Models in Reverse Supply Chain: A Review
Abstract
Reverse logistic has become an important topic for the organization due to growing environmental concern, government regulation, economic value, and sustainable competitiveness. Uncertainty is one of the key factors in the reverse supply chain that must be controlled; thus, the company could optimize the reverse supply chain function. This paper discusses progress in reverse logistic research. A total of 72 published articles were selected, analyzed, categorized and the research gaps were found among them. The study began by analyzed previous research articles in reverse logistic. In this stage, we also collected and reviewed journals discussing about the reverse supply chain. Meanwhile, the result of this stage shows that uncertainty factor has not been reviewed in detail. The most common theme as the background research in reverse logistic is environmental and economic aspect. Uncertainty in Close Loop Supply Chain is the most widely used approach, followed by the usage on reverse logistics, reverse supply chain and reverse Model. The most used approach and method on uncertainty are Mixed Integer Linear Programing, mixed integer nonlinear Programing, Robust Fuzzy Stochastic Programming, and Improved kriging-assisted robust optimization method. Customer demand, total cost, product returns are the most widely researched aspects. This paper may be useful for academicians, researchers and practitioners in learning on reverse logistic and reverse supply chain; therefore, close loop supply chain can be guidance for upcoming researches. Research opportunity based on this research combines total cost, quality return product, truck capacity, delivery route, remanufacturing capacity, and facility location got optimum function in uncertainty. The research method and approach for MINLP, IK-MRO and RSFP provide many opportunities for research. For theme and area in reverse logistic, close loop supply chain is the theme that provides the most research opportunities.
Full Text:
PDFDOI: https://doi.org/10.59160/ijscm.v9i2.3338
Refbacks
- There are currently no refbacks.
Copyright © ExcelingTech Publishers, London, UK